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MOTION OF CONDUCTING BODIES IN A MAGNETIC FIELD

This book represents a collection of articles on the
theory of induction, magnetohydrodynamic (MHD) machines
with a liquid metal working medium, the electromagnetic
processes in an ideal, conducting MHD machine, and the
higher spatial harmonics of the magnetic field of an
induction MHD machine. It also discusses the transverse
edge effect in plane, induction MHD machines, the longi-
tudinal edge effect in linear MHD machines, the pondero-
motive forces influencing conducting media in the traveling
magnetic field of a cylindrical inductor, and a theory for
the propagation of pulsed electromagnetic fields in moving,
conductive media.

From the Editorial Board /5%

The book Dvizheniye provodyashchikh tel v magnitnom pole (Motion of Con-
ductive Bodies in a Magnetic Field) which we ‘offer to the reader is a survey of
work on electromagnetic processes in magnetohydrodynamic (MHD) induction ma-—
chines (generators, pumps) with working media of liquid metal.

The topics in this collection touch on the theory of MHD machines examined
from the so-called electrodynamic approach, i.e., disregarding the magnetohy-
drodynamic effects in the machine channel.

The surveys include most of the papers published on the problem in ques-
tion and several which were in the process of publication as the manuscript
was being prepared for press; some original findings are also presented.

It is proposed in the immediate future to devote a separate work to a
survey of magnetohydrodynamic phenomena in MHD induction machines.

Please send all requests and criticisms about the book to the Institute of
Physics of the Academy of Sciences, Latvian SSR at 19 Turgenev St., Riga.

STATE OF THE THEORY OF MAGNETOHYDRODYNAMIC INDUCTION MACHINES
WITH WORKING MEDIA OF LIQUID METAL

Ya. Ya. Liyelpeter

Magnetohydrodynamic (MHD) induction machines with a working media of
liquid metal may be used as converters of the mechanical energy in the liquid
metal flow into electrical energy (generators) or, on the contrary, as con-
verters of electrical into mechanical energy (motors, pumps, brakes). Up till
now liquid-metal MHD machines have found their chief use as pumps for trans-
ferring liquid metal. The use of these machines for generating electrical
energy involves the development of methods for converting thermal energy into

*
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energy of liquid metal flow. Elliot's proposal of a two-phase conversion

cycle is noteworthy (Ref. 1); other systems are also well known. Comparatively
few papers (Refs. 2, 3) have been published on liquid-metal MHD generators in
contrast to plasma generators.

Approximate numerical evaluations of the basic characteristics of MHD
induction generators indicate that at powers of the order of thousands of
kilowatts their efficiency reaches 50-70%.

Papers by A. I. Vol'dek (Ref. 4) and N. M. Okhremenko (Ref. 5) give a
synopsis of the theory of induction pumps. Below we shall scrutinize several
aspects of the state of the theory, which are explained in less detail in the
articles mentioned.

A large/ggmgﬁguctural diagrams of MHD induction machines are known. The
design of a specific MHD machine must always solve two problems: (1) selection
of the optimum structural plan, and (2) finding the optimum relationships be-
tween the design variables for the given system. 1In optimizing the design of
a specific machine, we must know the numerical relationships between the phys-
ical quantities determining its properties. In other words, we must analyze
the characteristics of the specific machine with prescribed specific loads and
geometrical dimensions.

From this it follows that the basic tasks in MHD induction machine
theory are to analyze the properties of a set of structural diagrams at pre- /6
set specific loads and geometrical dimemnsions and to elaborate methods of
optimizing dimensions and specific loads at the prescribed useful power. The
first part of the task is by now in a comparatively well-developed state.
The author gives a survey of the articles devoted to matters of optimization
(Ref. 6). 1In the following we will touch only upon the first part of the
theory of MHD induction machines.

The design of an MHD machine with liquid-metal working medium must
unite the properties of electrical and hydraulic machines, and to the maximum
degree must satisfy the specific demands made on both types of machine. The
result of the latter is obviously that the channel of the optimum machine will
have a cross-section varying over its length and a variable mean flow velocity
even in the machine's active zone, while the electromagnetic and hydraulic
processes in the channel will be complexly interconnected, making it impossible
to study them separately. In this form the theory is at present completely
undeveloped. In all the problems investigated, the channel cross-section
is assumed to be constant along its length.

A concurrent solution of the electromagnetic~field and hydrodynamic
equations in the last case is exceptionally difficult. Therefore, in practice,
recourse is had to various sorts of approximations, e.g., the electromagnetic
processes and the hydraulic phenomena are examined separately. Therefore, we
may conventionally speak of the electromagnetic theory and the hydraulic theory
of MHD machines, although they are necessarily interconnected. The first poxr-
tion has, at present, been developed to the greatest extent. The second is
for the time being in the initial stage of elaborationm.



In electromagnetic theory, a liquid metal is regarded as a solid body,
e.g., a strip, cylinder, or the like, which moves at a velocity equal to the
average speed of the liquid. 1In this case, we must determine the electro-
dynamic force field, integral force, and energy (power) transmitted from the
winding to the liquid metal (in the motor and brake regime), or in the other
direction (in the generator regime). From these data we may compile the
equivalent electrical circuit for the machine and its parameters, and may
analyze its external characteristics and operating conditions.

Consideration of hydrodynamic effects in the simplest case is reduced
to the fact that part of the electromagnetic pressure is expended on equa-~
lizing internal frictional forces in the liquid. Hence, the employed pressure
is less than the electromagnetic pressure. Hydraulic losses in friction in
this case are determined for the prescribed channel shape, due consideration
being given to the effect of the magnetic field on hydraulic resistance.

In the approximation approach to MHD machine theory, one problem of /7
hydraulic theory is to define certain corrections to electromagnetic theory.
In principle, this route may be justified to some degree, for we may assume
that in the optimum machine the distribution of electromagnetic forces over
the channel cross-section should not be very uneven, Nor will the distribu-
tion of averaged velocities substantially differ from the configuration during
flow because of external pressure forces. The need for more detailed study
of magnetohydrodynamic characteristics is, however, quite obvious.

Let us examine in somewhat more detail the state of MHD induction machine
electromagnetic theory, about which the largest number of papers has been
published. This part of the theory comprises the study of electromagnetic
field structure in the working gap of the machine, as well as of processes in
the magnetic and electrical circuits which determine the effective resistance
and reactance of the windings. Magnetic and electrical field structure in
the working gap depends on the structural shapes of the stators (inductors)
and the channel configuration. Every structural layout of the machine has its
own specific phenomena which have a substantial effect on the machine character-
istics, e.g., in a plane induction pump an important role is played by a trans-
verse edge effect which is lacking in a cylindrical pump.

Assuming the magnetic permeability of the magnetic circuit to be constant,
we may describe the electromagnetic processes by a system of linear differen-
tial equations. When studying field structure in the working gap, we usually
assume that one of the components of magnetic induction on the inductor sur-
face is given, and we shall relate this component with the current in the mach-
ine windings.

The plane linear MHD machine has been studied in greatest detail. Ref-
erences 7-11 have discussed electromagnetic processes while neglecting the
longitudinal and transverse edge effects, on the assumption that only the fun-
damental harmonics of the magnetic field is present. In this case, the fields
depend only on a single coordinate directed across the channel. Cases are ana-
lyzed with conductive channel walls (Refs. 8, 9) and without them (Refs. 7, 10,



11). References 16-22 study the effect of the higher spatial harmonics of
the magnetic field, which are caused by discrete spacing of the winding con-
ductors and by serration of the inductor surface. This subject has also been
touched upon in (Ref. 23). The theory of MHD induction machines may likewise
partially use detailed studies of the higher harmonics in ordinary electrical
machines. A comprehensive survey of this subject is found in Geller and

Gamata's work (Ref. 40).

A comparatively large number of studies deal with the transverse edge
effect in a plane MHD induction machine (Refs. 24-39). They solve prob- /8
lems which are stated in various ways and which examine the motion of a
conduction band of finite width in a traveling magnetic field. The basic find-
ing of these studies may be reduced to computing the coefficient of pressure
attenuation and analyzing the influence of the transverse edge effect on
characteristics of the machine. A new principle for simulating vortex fields
in the conduction band is elaborated in (Ref. 33). References 34, 35, and 38
examine the transverse edge effect when there are shortcircuited buses in the
channel of a plane MHD machine.

Despite the great number of published works, the question of transverse
edge effect cannot be assumed to be thoroughly studied since many solutions
(Refs. 26-28, 30, 31) are obtained for various initial conditions, while no
general analysis or sufficiently comprehensive comparison of results with
experimentation has been conducted.

A number of works have studied magnetic field structure of an inductor
of finite length and the problems associated therewith of phase asymmetry in
the winding (Refs. 41-46). The totality of these phenomena is usually called
the longitudinal edge effect in the primary circuit. It has been ascertained
that a break in the magnetic circuit leads to the generation of pulsed com-
ponents of the magnetic field along with the traveling component. Methods
have been proposed for balancing the pulsating fields. Distortion of field
structure associated with motion of the conducting medium through the final
zone of propagation of the traveling magnetic field (longitudinal edge effect
in the secondary circuit) has been partially studied (Ref. 47). (Ref. 48)
examines the edge effect in the primary and in the secondary circuit together.

A survey of longitudinal edge effect is found in (ref. 4).

The theory of cylindrical MHD induction machines is treated in fewer
works than is that of plane machines, although this theory is more promising
from the electromagnetic viewpoint (there is no transverse edge effect) since
in practical computations the effect of channel curvature on field distribution
may in the vast majority of cases be neglected, i.e., the problem may be re-
garded as a plane one. (Refs. 7, 49-54) scrutinize various problems for cy-
lindrical MHD machines with constant channel cross-section without regard to
longitudinal edge effect. (Ref. 49) computes the ponderomotive force acting
on a conductive cylinder of finite length in an infinite cylindrical inductor
and confirms the fact (which was observed experimentally previously) that force
density peaks at a certain relative cylinder length.



The cited list of works on various problems of the motion of conducting
bodies in a traveling magnetic field is not exhaustive. There are sev- /9
eral experimental works studying magnetic field structure of an actual in-
ductor in a MHD machine, the ponderomotive forces acting on solid conductive
bodies, operating characteristics of the machine, and other effects (Refs. 55-
59), but they are considerably fewer in number than the theoretical works.

When we speak of the MHD machine electromagnetic theory on the whole, we
may note that there is a substantial number of works on this theory, but that
by no means all matters have been investigated with adequate care. While the
solutions themselves of electromagnetic field equations have been obtained for
a large number of different cases, there is usually inadequate analysis of
these solutions and comparison of them with other similar problems. The find-
ings of the studies are rarely reduced to convenient computational coefficients
and formulas defining the parameters of equivalent electrical circuits or con-
veying the basic energy characteristics of the machine - power, efficiency,
power factor, etc. All this impedes practical utilization of research find-
ings in the design of specific MHD machines.

One purpose of the present collection is to make a critical survey and
compare the findings of papers on the electromagnetic theory of MHD induction
machines in order to facilitate their use in design work. The collection
adduces surveys of individual problems in the theory, e.g., on longitudinal
and transverse edge effect, the influence of higher spatial field harmonics,
etc. A separate range of questions is considered in the studies dealing with
motion of conducting bodies in pulsed electromagnetic fields. A survey of
these works is given in connection with their possible use in metering tech-
nology, e.g., in measuring the flow rate of a conducting liquid (Refs. 59-60).
Various devices with traveling and pulsed magnetic fields are also applied
for the same purpose (Refs. 61-63).

In conclusion let us briefly touch upon the state of the hydraulic theory
of MHD induction machines.

Accurate solutions to problems of conductive liquid motion in a traveling
magnetic field may be obtained only for the simplest cases of laminar flow,
e.g., where velocity has only a single component, and magnetic field amplitude
in the gap is either constant or varies in accord with a given law. Several
such solutions have been published (Refs. 8, 64-69), but their results may be
used merely to give a qualitative representation of the nature of the flow,
since laminar flow conditions are very infrequently observed.

0f definite practical interest are the results of an experimental study
of turbulent flow of a conducting fluid in a constant transverse magnetic /10
field (Refs. 70-73). These experiments have been used to derive empirical
relationships for the coefficient of hydraulic resistance in smooth and rough
channels of constant cross-section, while taking into account the influence of
the magnetic field. To design MHD induction machines, however, these findings
must be utilized while taking into consideration the fact that the drag co-
efficient may be different in a traveling field. 1In this connection the results



of N. M. Okhremenko's article (Ref. 74) on the effect of a traveling magnetic
field on the drag coefficient are very interesting.

Solutions are known for the distribution of electromagnetic fields in a
conducting fluid moving with the velocity distribution given by a power law
(Ref. 75).

Finally, there are certain experimental studies on fluid flow structure
in the flow-through parts (channels) of MHD machines disregarding the magnetic
field effect (Ref. 76). The chief purpose of these studies is to define the
hydraulically optimum channel shapes - in particular their intake and outlet
zones.,
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ELECTROMAGNETIC PROCESSES IN AN IDEAL, INDUCTION MHD MACHINE

A, K. Veze, L. Ya. Ulmanis

1. Introduction

The basic theory of induction MHD machines is concerned with the cal-
culation of electromagnetic processes in an infinitely wide conductive band
located in the traveling electromagnetic field of a flat inductor. If it is
assumed that the conductive layer is infinitely long and that the sinusoidal
traveling wave produced by the idealized inductor has only a basic harmonic
component, such a problem may be readily solved analytically. The first prob-
lems of this type were solved in conjunction with the development of a theory
for asynchronous engines (Ref. 1-2). Subsequently, such problems were solved
for MHD machines. The results obtained were utilized for designing induction
pumps (Ref. 3-6), but the theoretical formulas had to be refined by the intro-
duction of certain empirical coefficients. These coefficients were employed
to provide an approximate determination of the difference between the assump-
tion advanced in the theoretical formulation of the problem and actual practice
(Ref. 8, 18, 26).

The results obtained when such problems were solved were also applied
when designing MHD generators, brakes, flow meters, electromagnetic mixers of
metals in melting furnaces, chutes for transporting molten ferrous metals, and
other equipment.

This article presents a summary of the solutions for electromagnetic
processes in a conductive band located in a traveling magnetic field of a flat
inductor, under the assumption that the dimensions of the device are infinite
in the direction of motion of the field and in the direction in which the elec-
tric current passes.

2. Formulation of the Problem

A different number of layers with differing electroconductivity may be
located in the operational zone of MHD machines. For example, an insulation
layer, the channel wall, and in the middle a layer of electroconductive
liquid are usually located on each side of the inductor in the clearance of
flat induction pumps operating symmetrically, i.e., five layers in alil.
Pumps are also being designed for pumping two liquids at once; in such /16
devices, the number of layers is greater., Therefore, it is advantageous
to examine the problem in the general case, assuming the presence of many
layers in the inductor.

A flat ideal inductor, producing a traveling magnetic field, may be
represented in the form of one or two infinitely thin layers of current, whose
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linear density (linear current load)
has only one tangential component.

X
Y s IS I When there are two layers of
T 1g 5 T current, we shall call the inductor a
i n n__ two-sided inductor, and when there is
Flba, 6n-s one layer we shall it a one-sided in-
! - ductor.
o - - T _. .z
ITEZ— f;__ R Our problem may be formulated as
J s, 6 follows.
77 G 0SS ST S S S SSS
There are n parallel layers (Fig-
Figure 1 ure 1) in the traveling magnetic field
of a flat inductor. The specific con-
Arrangement of Conductive ductivity of these layers is Ol’ 02, .

Layers in a Two-sided Inductor . .
©> O > and the thickness is bl’ b2, .o

. bn’ respectively. We shall assume that all the layers move at constant vel-
ocities with respect to the inductor equalling Vis Vo o5 Ve In order to

compute the velocity of each layer, let us introduce the following notation:

U, — P
S|=-——“l ;

Us

Uy — T
52=_-2 ;

Uy

Uy—7,
sn= :vs 5_,

where v = 2tf is the velocity of the traveling magnetic field with respect to

the inductor (t -~ polar division of the inductor, f- frequency of the current
supplying the inductor). We may assume that the magnetic permeability of /17
all the layers, excegt the magnetic circuit of the inductor, is constant, and

equals u,= 47 *10~{R, It equals 1y = Conmst. in the magnetic circuit of
m

the inductor. The pole division of the inductor, and also velocity of the
field along both of its sides are assumed to be the same.

The magnetic field H the vector potential A and the electric field
E have the following components in the given case:

H{H.; 0; H,};
A{0; A, O
E{0; E,; 0).
From this point on, we shall designate Ay simply by A and E&by E.
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The following differential equation may be solved for each of the k
layers
924, | 0PAn _ 0A,
ax? T gzz MORTgg - (1)

in the case under consideration, all the electromagnetic quantities
have a sinusoidal dependence on wst ~ az, and they may be expressed by means
of functions having the following form

2 =10 (x) eltost=02),

where x is the corresponding electromagnetic quantity. Equation (1) then
assumes the following form

B2y .
o~ Wm0, 2
where
Br=VYa?+iporosn=">91n+ iPor; (3)
A e L2 Vetalal —
'_¢lh=VVa +uk0§,m3k+ﬂ = aVV——~—S“ ';H-l =afu; (4)
(- LrOr oS — a2 2 l—1
1P2h=1/ya +ll-h(;kﬁ)sh @ _ . ‘I/Ze_h_j'z__ gy (5)
_ DrOpr0Sy (6)
—-ﬁ—_ -

a

On surfaces dividing adjacent layers, the magnetic and electric fields
must satisfy the following boundary conditions:

5 /18
Bii=Byg; H,=H, for r=b,— 5;
Ba=Busi Ha=Ha for x=b,+b— o
N
BIk'_“Bx(k'!-l); sz=Hz(k+1) for x=bl+"'+bk~%

(where & is the distance between both sides of the inductor).

We shall define one of the components of the traveling magnetic field on
the inductor surface -~ i.e.,, in the case of x = * & , Practical computationsg
2
have shown that it is more advantageous to define the tangential component of
the field, since -~ if the magnetic permeability of the inductor magnetic circuit
is 4 = ® «~ pumerically it equals the linear current load of the inductor, and
does not depend on processes occurring in the electroconductive layers.

Thus, in the general case the boundary conditions on the inductor surface
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may be formulated as follows:

Hz-_-[{mel(ms{—az) for x= g;
(8)
H,= — Hyyeltost-az+e) for X=—.
Here ¢ is the angle at which the phase shifts between the magnetic fields on
both sides of the inductor, and it assumes any value in the general case. In
practice, ¢ = 0 customarily holds - i.e., the windings on both sides of the
inductor are switched onconcurrently. In the literature, with the exception of
several articles (Ref. 9, 10), it _is this case which is primarily investigated.

In all, there are 2n boundary conditions which are requisite in order
to determine 2n integration constants. If it is assumed that in the case of
X = g—the linear current density equals zero, we have a one-sided inductor.

If the problem is symmetrical with respect to the x = 0 plane - i.e.,
x = bn—(k—l); ck = On—(k—l) and ¢ = 0 - the number of layers n is odd, since

for even n there would have to be two adjacent layers with different physical
parameters in the middle of the clearance. However, in this case the problem
is non-symmetrical. The solution of the symmetrical problem in the mean band
is expressed by the even or odd function of x depending on whether the /19
desired quantity has even or odd symmetry. However, solutions in symmetrical
bands, which do not come in contact with each other, are characterized by a
sign before the coordinate x for quantities with even symmetry, and are char-
acterized by a sign before the coordinate x and before every expression for
quantities with odd symmetry.

b

There is no necessity of finding a solution for every layer when solving
the symmetrical problem. We may find a solution for only one half of the
symmetrical region, assuming that there is a tangential component which equals
zero in the middle of the clearance. The solution for the other half of the
symmetrical region may be found by wusing the relationships presented above
between the solutions in symmetrical layers. It is simpler to solve the problem

by employing symmetry, since we must determine only n + 1 constant, instead of
2n constants.

The force lines of the magnetic field may be determined by solving the
differential equation

i’f_ —_ Reﬁx .
dz ReHz (9)

The force acting upon the conductive band is composed of a constant and
pulsating components. The latter pulsates with the double frequency of the
traveling magnetic field. The force may be computed analytically by multiplying
the instantaneous values of current density and magnetic induction. Pulsations
of the force density may have an influence upon the hydrodynamic processes in
liquids located in a traveling magnetic field. When the ponderomotive forces
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in induction pumps and other MHD machines are investigated, the pulsation of
the force component is usually disregarded, and its constant component is com-
puted, which equals the force averaged over time.

In the problem under consideration, there are two components of the
force density - the tangential component fz and the normal component fX. Their

constant components may be computed according to the following formulas
1 .
f:=‘2" Re(]sz*) (10)
and

fo= —-1,5 Re(j,B:*). (11)

They depend only on the x-coordinate. The electromagnetic pressure per unit
of length P, in the k-th layer, which is produced by the traveling magnetic

field - i.e., the density of the tangential force component, is /20
Xn-i-bk
Pup=— »1-/ Re(j,B:*)dx, (12)
26,
Xo
and the mean density of the normal force component is
Xot-by
1 ,
pxn=m Re{(j,B.*)dx. (13)
Xo

In the symmetrical case, the tangential component of the force density
has even symmetry, and the normal component has odd symmetry. This means that
the normal component of the resulting- force equals zero in the symmetrical
case. 1t only contracts the body, but does not displace it.

The power transmitted to the conductive band from the inductor by means
of the traveling magnetic field may be expressed by means of the normal com-
ponent of the Poynting vector, which expresses the density of the electromag-
netic energy flux per unit of time:

Sx= %[E,,Hz*]. (14)

The active power transmitted to the body through a unit of surface area
equals the real part of the the complex §X, and the reactive power equals the

imaginary part of the complex éx'

If the coordinate system is related to the moving conductive band, then
the Poynting vector may express that portion of the energy which is converted
;nto Joule heat losses. If the coordinate system is related to the inductor,
SX expresses that portion of the electromagnetic energy which is converted into

mechanical energy.
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The studies (Ref. 1-25) solved different problems of the type examined
above. Let us analyze certain cases, which are of the greatest interest.

3. Electromagnetic Phenomena in a Traveling Field of a One-Sided
Inductor

(a) Conductive Half-Space

In a study by I. M. Kirko (Ref. 11) the simplest problem of this type
was investigated - the motion of conductive half-space in a traveling magnetic
filed.

A conductive medium with the specific electric conductivity o fills /21
the half-space x > 0, and moves at a constant velocity v along the direction
of motion of a traveling magnetic field (Figure 2), which is produced by an
infinitely thin current layer located on the surface x = 0. 1In the case of
X < 0, it is assumed that the half-space is filled by an ideal ferromagnet
with y = © and ¢ = 0,

X 650

MEp, The solution of Maxwell equations
provides the following values for the
) components of the electromagnetic field
-V _ in  conductive half-sgpace:
V4 7 7SS 7 / r 4 . l'apoA
60 By = —22=0 ¢Bx, 1
preco m [ (15)
Figure 2 Bum= poAoebx, (16)
Half-Space Above a One-Sided E;==£93§zb»€ﬁﬁ (17)
Inductor B

. iapgosd
jm= “2ROTS0 pops, (18)

Thus, all of the field components and the current density decrease

according to an exponential law as one recedes from the surface x = 0,

At the distance —%— from the surface x = 0, the magnetic field decreases
1 .
by a factor of e - i.e., this quantity represents the depth to which the travel-
ing magnetic field penetrates (Ref. 3)

1 1 2
\h = e— == — —— . (19)
T, V}/1+82+1
In the special case, when ¢ - 0 - i.e., when the conductive medium is
absent or fs = 0 - we have
1
ho=h,=;.

18



In this case, the pole division of the inductor T - the quantity
which is contained in the dimensionless frequency ¢ — determines the depth to
which the traveling magnetic field penetrates. This phenomenon is arbitrarily
designated as the geometric surface effect.

The surface effect in a traveling magnetic field is characterized /22
by the fact that the planes of the same phase of the field are not perpen-
dicular to the x > 0 plane, but are inclined toward it at the following angle

1
@= tan~Ll-.
2

We obtain the amplitude of the normal component of magnetic induction
from expression (15)

=7 e b

V1+¢2 = (20)

and the tangent of the angle at which the phase shifts x < 0, as compared with
the phase surface density of the current Ag:

P cos ll?QX’—Ez sin Pax

tan Px=" .- — .
Y1 SinPax + P2 COS Pax

(21)
The ratio of the amplitudes of the tangential and normal induction com-

ponents increases with an increase in ¢;

B 4
B-=Y1+¢

B, (22)

The angle at which the phase of the tangential induction component shifts
changes proportionally to the x coordinate;

= — 1. (23)

All of the quantities investigated are determined by the parameter e.

Force Lines of the Traveling Magnetic Field Above a One-Sided
Inductor in the Case of € = 0

Figure 3
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Figure 4

/

Force Lines of a Traveling Magnetic Field Above a One-Sided
Inductor in the Case of 72e = 50

Figures 3 and 4 illustrate the magnetic force lines in an infinite half-
space above a one-sided inductor for two values of e, which were calculated
by Yu K. Krumin. Similar problems were investigated by Schilder in (Ref. 23).

The parameter ¢ also determines the density of the pondermotive force
averaged over time and the electromagnetic power;

1 €
= 22— — o 2Yux
fZ 2 a“UAO -V1+g§ 4 R (24)
f _—_-.l. Aq2 & -2, x
% 2 1P2Llo 0 VT'_F_S—! e B (25)
or i /23
i
g _ (26)
l o \pz
= — — R,
P“ 2 a U-OAO -V1+82 ’
l o TPI
Pr=geg woded r5. (27)

The power factor of an idealized energy convertor, without allowance
for the leakage flux of the winding, is

COoS p==—==, (28)

The dimensionless quantity e is an important characteristic of the /24
electromagnetic processes in problems of the type which we are considering.
It was called electromagnetic slipping in a study by Kh. I. Yanes (Ref. 19).
This quantity may be also regarded as the magnetic Reynolds number
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ud

Rem=—
V!
in which the velocity u is represented by the relative velocity of motion of
the traveling magnetic field and of the conductive medium gs . The distance
1 . e . . . .
o %, is assumed to be a characteristic linear dimension, and the magnetic
s . 1
viscosity equals v_ =
m HQO

The quantity & changes sign when the slipping sign changes: in the
braking and pumping regimes € > 0, and in the generator regime of the MHD
machine € < 0.

(b) Conductive Layer in the Field of a One-~Sided Inductor

The articles (Ref. 12, 13) investigated the following problem concerning
three layers: the conductive layer which moves at a constant velocity 2tf
(1 - s) with respect to the inductor is located at the distance § from the one-
sided inductor of a traveling magnetic field (thickness of the conductive lay-
er, b; specific conductivity, o; specific conductivity of the regions I and
III equals zero). The non-conductive layer behind the conductor is not limited
(Figure 5).

X
_ Let us analyze certain re- /25
i 6,=0 lationships obtained when the Max-
- - — 1 well equations are solved for the given
i 6,=6 .T problem.
R g-ﬂ ) } In order to simplify the analysis,
L 9= 'ﬁ let us introduce the following dimen-
77 ;7“'l TIIITTTV Z z sionless parameters, except for e:
R b=ba, (29)
Figure 5 _
& 5=0a, (30)
Solution of the Problem Regarding - (31
X . xX=xa,
Three Layers in the Field of a (32)

One-Sided Inductor @ = poowsb?

_ The dependence of the induction components on the dimensionless coordinate
x is shown in Figures 6 and 7. B 1is the tangential induction component on
the inductor surface, and ¢ is the angle at which the phase shifts between both
components with respect to the phase of the tangential component on the inductor
surface. The solid curves refer to the normal induction component; the broken
curves refer to the tangential component. Graphs are given for different values
of the parameter &, and the value of € = 4.5 corresponds to the force maximum

for a given thickness b = 0.35.
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It may be seen from the graphs that both the amplitude and the argument
¢ of the normal induction component decrease as e increases. The phase /26
of the normal induction component sharply changes based on the thickness of
the metal layer during this surface effect. When passing through it, ¢X

rapidly decreases, and the phase of the normal induction component lags behind
the tangential component on the surface of the inductor.

In the case of g = «, Ho equals the linear current load AO. If the

space is filled by a substance with ¢' # 0 and u' # « in the case of x < 0,
then the following relationship holds between HO and AO:

H, o’
A= £ [(a?sh a8+ B2ch ad) sh o+ apesd ch pb), (33)

h
where d=(a+B)[up’ (o ch ad+ B sh ad) + p’a(a sh ad+ B ch ad)Jeds +

+ (B—a)[up’(achad—pshad) +p'a(ashad—pchad)le-B?;
B =V FWoas.
The reaction of secondary currents in the conductive layer }s character-
ized by a change in the vector of the normal induction component By/Bn on the

inductor surface for 8 = 0, as a function of e, and in the relative
thickness of the conductive layer b (Figure 8). In this case ¢ characterizes
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the difference between the angle at which the phase shifts between the normal

induction component for different values of b and e and the tangential com-
ponent on the surface of the inductor. If e » 0, then Bx

By

-+~ 1 and ¢ +-%— .

Both the amplitude of the vector and ¢ decrease with an increase in e.
L ]

In the case of B, | = 0, the angle at which the phase shifts between
BO ﬁ
both components strives to the limiting value —%— . Thus, for b > 1 X
B
0

strives to the limit from the left side of the bisector, and in the case of
b= 0.1 - 0.2 it strives to the limit from the right side. However, for

b = 0.25 - 0.75 the geometric location of the end of the vector has a point
of inflection approaching the limit first from the right side, and then from
the left side. 1In the case of b > 0, the geometric position of the end of the

vector ﬁx represents a semicircle. In the case of b = 2, the vector dia-—

Bo

gram practically coincides with the curve in the case of b = o.
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Let us present the relationships for the components of the ponderomotive
force in terms of the dimensionless criteria employed in the work (Ref. 10):

cm-r . EU

Fz=,'_—‘“H02 - szRl

-U=Fsh 2yi _ bsin2y, + !ﬁ‘%?i (sh 2y, 4 sin 2y, +
Yi Y2 Y1 Y2

+2(ch 2y; —cos 2y3);
24022 _ _
R’ = (sh?y, +sin?ys,) [_(l'_.i;X?L ch? 4+ sh 26+ sh? 6] +

bt

- 2 2 H (34)
+e20 [% sh 2'Y1+ % sin 2Y2+ Y———-l :*b—;v2 (chzy;—-sin"’ ‘VQ)J -+
2 - - .
+ _\_;__;Vg ch 6e% (yz sh 2y, —1v; sin 2y,);
1/ Ve +b64+82 _ -yaz_*_yx__gz.
V‘“V 2 PV ‘1/ 2
The transverse component of the force has the following form /28

- F o [o
Fx=” x: - 8*537?-' [—Z- (ch 2y, —cos 2y;) +2(ye sh 2y1—y1 sin 2y2)J (35)

where (FXct and cmt are the averaged transverse and longitudinal components

of the force, respectively, acting upon a volume of substance 2b m3 - i.e., on

a column with unit area eut out of the plate .
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Figure 10

Dependence of Fx on w in the Case of § = 0

Figures 9 and 10 present the dependences f‘x and ?‘Z according to (34)
and (35) as a function of w for different values of the parameter b' = -% in

the case of § = 0,

The dependence of the ratio of the maximum values of the force

24
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= and §
Fzmax on bfis given in Figure 11. The limiting value of the force component

¥

xXmax

Fx in the case of ¢ » » can be used as an approximate estimate of the maximum
value of the function Fz(e). If the thickness of the conductive layer is small

~ - i.e., the depth to which the traveling magnetic field penetrates is larger

than b —- and if the conductive layer is close to the inductor, then FZ mnax A
lim F_.
X
g—>c
F The flux of electro-magnet- /29
%5 ‘ ic power through a unit of surface
Amax N of the one—sidegl inducgor also has
\ | two components Il and Ii,:
N —
4= . .
P = Me=y En* Bim fi,m _ L o Bon €36)
\:\_ g:a’ﬁﬁ 2 Ho 2 ~ Mo
' . wsBe? [ - -
‘ Pa:ReH’i:?auo% {%—2(1+1p12+1pg2)sh2v.+
o 23 y :
+ 2—1(\p.’+¢22—1)sin 2vg+1~p@2(ch 2v,—cos 202)}; (37)
Figure 11 )
- ~ s @SB {4 (T 24124 1Y
Dependence of FZ max °P b Pr=Im Hx:éa”o‘%{%m—-;—‘fz—j—b sh 2v,—
F (B2t 2_ - _
X max _ Wl ‘*‘21IJ2 1) sin202+1p|20h20|+¢22C0$202}.
The tangential component of the Poynting vector has only a real part:
I — (1)3302_ i —_— h — .
1_20110?[ +Pic 201+’lb251n202+ (38)
F (P12 + 2+ 1) sh? v, + ()2 +pa— 1) cos? vg).
Here

vimap (8+b6—x); vi=aPy(8+b—x);
R= (sh oy +sin? bs) [ (12+952) 2 ch®5 + sh 26 +sh? 5]+
+e2[p; sh 26, + o sin 257, + (V12 +2?) (ch? Bp, — sin? Bejg) ]+
+2ﬁ§ﬁbz ch&eb (1172 sh 25(5, —-1—1;, sin 25@;).
IIZ expresses that portion of the electromagnetic energy which is propa-

gated in the direction of motion of the traveling magnetic field.
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The results derived from solving the problems described above may be
applied in designing electromagnetic chutes for transporting molten ferrous
metals. Similar problems were solved for electromagnetic mixing of a liquid
metal in melting furnaces (Ref. 14 - 17, Ref. 20 - 22) and for non-contact flow
meters for molten metal (Ref. 24, 25). For electromagnetic mixers, the prob-
lems were solved with many layers, with allowance for an insulation /30
layer above the inductor and the screen. Since the depth to which the travel-
ing magnetic field penetrates in these cases is less than the thickness of the
molten metal layer, it is usually assumed that its thickness is infinite. 1In
view of the fact that the nature of electromagnetic processes in the electro-
conductive layer does not depend on other layers located between the layer
under consideration and the inductor, the nature of these processes in a molten
metal is the same as in conductive half-space.

40 ¥
_ ; jo
-y )
b=15
200 // . 20
b=1
160 A > ﬂ; 10
——///
0 5 10 5 & 0 5 10 5 20
Figure 12 Figure 13
Dependence of the Phase Shift Dependence of the Ratio of the Mag-
on € netic Induction Amplitudes on ¢

The problem was solved (Ref. 24) for a non-contact electroconduc- /31

tive medium velocity meter for a system consisting of an inductor,
an electroconductive layer, and a ferromagnetic packet. It was assumed that
u = « for the inductor and the ferromagnetic packet

o= —arctg (th b tg y,b) (39)

and

4 /1 40
K= 7(ch21p,b+c0521p2b. (40)
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¢ is the phase lag of the normal component of the traveling magnetic
field when it passes through a layer of the electroconductive medium, and
x is the ratio of the amplitudes of the normal induction component.

Figures 12 and 13 present the dependence of the angle at which the phase
shifts ¢ and the ratio of the amplitudes upon the parameters e for the three
values of b = bo.

4. Electromagnetic Processes in the Traveling Magnetic Field
of a Two-Sided Inductor

Several authors have investigated the problems related to the phenomena
in the field of a two-sided inductor. The problem was solved in the works
(Ref. 9, 10) for any value of ¢ in a general form. These problems are of
interest in designing equipment which employs the normal component of the
electromagnetic force, and for equipment operating in the case of ¢ = 180°.
They are also of interest for determining the influence upon the tangential
force component when ¢ deviates from O.

The problem was solved in (Ref. 10) for one layer (the tangential com-
ponent of the magnetic field was defined on the layer surface). In this case,
the following values of the fields hold within the layer:

aH
Hy= 5sh 205[) [chB(b+x)+e@chp(b— x)] eitost-a2), “
H,= hgﬂb [Shﬁ(b‘l‘x)—elm shp(b—x)]ellost-a2) (42)
Eg=— gratsos (ch p(6+x) +ei9 ch B (6 ~x)  etost-a), (43)

In this case, the thickness of the conductive layer equals 2b.

Relationships (41) and (42) may be employed to obtain the equation /32
for the force lines of the magnetic field, which has the following form for
no-load operation:

dx _ cha(b+x)sinaz+cha(b—x)sin(az—1) (44)

dz ;h a(b-+x)cos az—sh a(b—x)cos(az—1)°

In contrast to the angle ¢ which was introduced previously, here ¥
characterizes the phase shift between currents flowing in the direction of
the y-axis, since it is more advantageous to measure the current instead of
the magnetic field in practice. Only in two cases does ¢ = ¥ hold: when
they both equal 0, or 180°. Figures 14 and 15 present a picture of the force
lines of the magnetic field during no-load operation (calculated by Yu. K.
Krumin) for values of ¥ equalling O and 90°, in the case of 2b = 0.5 - i.e.,

T
when the thickness of the plate is two times smaller than 1, since the depend-
ence on ¥ is more apparent for thin plates than it is for thick plates.
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In this case, it was found that two components (which are different
from zero) of the ponderomotive force which is averaged over time and space
may exist - the longitudinal component which is in operation in the direction
of motion of the field, and the transverse component which operates in /33
the direction of the x-axis.

q 9 0
A‘;iiiiii;7_
0 é 0
Figure 14 Figure 15

Force Lines of the Traveling Mag- Force Lines of the Traveling Mag-
netic Field in the Clearance of a netic Field in the Clearance of a
Two-Sided Inductor in the Case of Two-Sided Inductor in the Case of
¥ =0 ¥ = 90°

The force components may be expressed as follows in dimensionless form:

e F, 1 — —
Fo= iz = g [(1+cos 9)Fo+ (1—cos ¢) Fiq), (45)
where
=F__ ¥esh2yi+yisin2y, .
(vi®+7v2?) (ch2y,—cos 2y3) (46)
Froo=b —Y2Sh2yi—yisin2y, | (47)
B WD) (ch2y1+cos 2y5)
5 _ F . (yi2—v22)sh2 2
Fo="*< —qin Yl Yo Y1 sin Y2 . 48
TRHE TNV i) oy Fsin?2y) (48)
where F and F designate the averaged transverse and longitudinal force

xct zct

components, respectively, acting upon a column cut out of a plate with a
cross section of 1 unit of area.

Figures 16-18 _graphically illustrate the dependence of (46) - (48) on
w, but, instead of b, a more convenient criterion is introduced

p=2L
-

In the case of w <«<b, a directly proportional relationship always exists
between the magnitude of the force and the value of the dimensionless criterion

W,
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Dependence of ﬁo on

In the case of w »b and w > 1 - i.e., when there is a strongly expressed /34

- - 1 .

surface effect - F0 A F180 n ——— , where the z-component of force strives
Yom

to zero in inverse proportion to V2w . For the z-force component, when the

inductor is switched on concutrently with ﬁO there is one characteristic region ——

in the case of w > b - when ¢ = 0°, but in Ehe case of w «1 the force changes
in inverse proportion to the first power of w . For F180’ all the maxima /35

of the curves occur in the case of w >> 2.5. There is no such limit for FO’

and the maximum value of the force increases with a decrease in b, shifting
toward smaller values of w simultaneously. When there is a sharply expressed
skin effect, the values of F, and F coincide, and the maxima strive to the

0 180
value of 0.354.

The transverse force component Fx also has maxima with respect to W.
When there is a decrease in b, the maximum value of Fx strives to the value
sin ¢
of 0.25. 1In contrast to fz, FX is an alternating function of the condition

. However, the absolute values of its extremums decrease so rapidly that only
the region of the first maximum is of practical importance. In the case of
w >»>b, we have

oshy2e . (49)

If the surface currents are given on the surface of the inductor
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Dependence of F180 on Dependence of FX on w
sin ¢
A=Ay eitost-az) for x=+4b;
A=A0 egilost~az+ W) for x=—b

as well as the space behind the surface currents - i.e., if it is occupied by
a substance with the specific conductivity o' and the magnetic permeability p'

in the case of |x|>b - then the field strength HO = HzO in the case of x = b

and AO are related by the following relationship :

Ho _ wBL(WB+pp")e?® — (B~ pp')e=206—2,p") eio (50)
A (WB+np’)2e2 — (u'B—pp’)2 280

(v is the magnetic permeability of the conductive band).

The angles at which the phase shifts between the fields ¢ and the currents
Y in the inductor are related as follows:

1m LB+ B’ e?? — (/B —pp)e~2P] e —20p’
— arcty LB+ R e — (B —pip)e=26] —2 up’ e (51)
P aret  T(WB+ uB) e — (B ) e8] eo—2up’ "
CHWB+up) e — (Wh—up) e 7] —2 up’ e

In the case of ¥ = 0°% ¢ = ¥ and
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Ho 1

A s .
A T Y
wB (52)
In the case of ¥ = 180° ¢ = ¥ and 36
H 1
29-= uB’ ————y (53)
° Bthsb
where
_==JL. “ﬁ__~l
# o’ H Po

I. A. Tyutin and E. K. Yankop (Ref. 6) have solved the problem for
¢ = 0° and the number of layers m = 5, taking into account both the influence
of the immobile channel walls, and the non-conductive heat-insulating layers.

Then 8y = 8, =8, = s8¢ = 1;
01=05=0; 03=04=0¢; 03=0;
Bi=Pfs=q; Ba=P2=B:; Ba=p;
by=b,=b; by="b; bi=bs=by,
¢=0% Hoy=Hp=H,, . =oo.

ind
The normal component of magnetic induction on the inductor surface is assumed
to be given.

R. A. Petrovich solved a similar problem, defining the tangential com-
ponent on the inductor surface. Since it is more advantageous to define the
tangential component, let us only investigate the solution of Petrovich. On
the other hand, if we know one solution, we may readily obtain another solu-
tion by means of the following relationship

xo—lHoCthab,, (54)

where HXO is the amplitude of the normal component of the magnetic field on

the inductor surface.

Let us write the amplitudes of the induction components in separate
regions of the clearance:

Byy= Eg_l‘g_".‘: (F chax—L shax),

(55)

, b b b
Bary= &%"ﬁ [5 sh g —g—sh B (g—x) +Bech Py Ch@z(’g“")] ’ (56)
Bxrir= MAoft aich Bx, (57
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The density of the induced currents in regions IIL and IV is:

Here

32

By= L‘QRA_@ [F shax—L chax],
b
Birv= E—O%O—E—' [ﬂ sh ﬁ—Q—Ch (ﬁlx—ﬁf —g—) +

+f¢ch ﬁ% sh §: (x-—%)},

Birii= Mfgﬁﬂ‘ﬁh e X.

frir=— -&‘%—Qii B ch Bx,

iry=— todoio 2 _¢
jrv z [ﬁshﬁzshﬁt(x 2)+

+ Be ch ﬁg—ch Be (X—TZ)J .

R=acshabqchpub,ch p 5 +Bchabysh b ch p 2 +

b
+PBicha b;ch B.b, sh B +aPshab;shpBb,shp %;

1
F=z[(a+ﬁt) (Bl+B)Ch(B‘g‘+ﬁtbt—a_‘g ~ab;) +
+(@=p) (B+BIch(Bo +Pibita  +aby) +
+ (a—B¢) (ﬁ:*ﬁ)Ch(—-ﬁ—Zb— +Bcbz+a7b- +ab) +

2

+(@+P) (Bi—B)ch(~p g +Pb—a g —aby) ;

] )
L3 (480 (0+p0sh(a L +abi—p & —pp+

+(a=:) (B+B)sh (5 HBibitad +ab) +

(58)

(59)

(60)

(61)

(62)

(63)

(64)



+(@+B0) (Bi—B)sh (B3 —Bibeta o 0, +

+(@=B) (Bi=Bsh(Bibi~pg +a 5 +aby) |. (65)

The electromagnetic pressure acting upon the conductive band, which is
averaged over time and over layer thickness and which is referred to a unit of
layer length, equals

Pe=

no? 4o caws | B | (sh\p + §1_n_M) (66)

4b 'R L P2
The normal component of the Poynting vector on the surface x = —g— has

the following form

ﬁx‘_‘%‘ Eui Hzt*=
(67)

lm&"}er (F*chax—L*shax) (Fshax—Lchax).

By computing the active power, we may find the power which is liberated
in molten metal, and we may determine the losses at the channel walls in the
form of the difference between the total flux of active power passing through
the channel wall and the power liberated in them.

Let us investigate certain simplified cases (Ref. 7).

if Op = 0, the electromagnetic pressure of the pump will be

Ao2 lFl F2
= RIE RS (68)

where & = 2’rpr1 is the length of the pump active zome ; P, is the number of

pairs of winding poles;
1 . 1 ,
Ki=F, sh-2~ a(d—b) +Fsch 0} a(d—0b);

Ka=F,ch %a(b-—-b);
Fy=ch b+ cos{zb;

Fi=3sinpab - 92 shypio;
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F3=%- sh ﬂ)lb— ¢2 sin ‘q’zb. L?;_Q

-

The active power transmitted to the molten metal and the electromagnetic
pressure are related by the following simple relationship

Py=p. Qs (69)
where QS is the output of the pump corresponding to the synchronous velocity

of the molten- metal

Qs=2ffab (70)
(where a is the width of the pump channel in the direction of the y-axis).

The electromagnetic power Pa represents the sum of two components: the

power of the Joule heat losses
Pp=pes Qs (71)
and the mechanical power
Pz=pe(1—5)Q.=p.Q, (72)
where Q is the real output of the pump.

The reactive power consumed when the magnetic flux passes through the
clearance is .

2
p= "°Al°+2;<2§—"-’[f‘. Fscha(8—b) +% (F2+FyTFe¥)sha(8—b)]. 73)

Let us examine the special case & <« 1. In physical terms, this means
that the magnetic induction produced by the induction currents in the con-
ductive band is considerably less than the primary (exciting) induction. The
expressions for the electromagnetic pressure and powers may then be con- /40
siderably simplified:

,,,=&tﬁoia”2r " (74)
2sh2—%

Po= boAdalkab2ef (75)
2sh"’a;—b

Pr=2tfucdcial cth 3. (76)

Here we have
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_ 1 abtshab
k1—_3?. ab ) (77

As may be seen from expressions (74 and 75), the electromagnetic press—
ure and the active power are directly proportional to ¢ in the case of & <«1.

If © >> b, then the tangential component of the magnetic induction is
small as compared with the normal component. The latter is almost uniform
with respect to the clearance height.

In this case, we have

2”0[81402

Pe= G @+ e’ 7
P — 210A¢%2tfable (79)
T T a (8746

pP.— p,oA022‘tfale (80)

1 —
—mfyf)—{i’%— 5[4+(l+eﬂ+sV1+af)a2b(o—b)]}.

The studies (Ref. 18, 19) solved the problems with respect to electro-
magnetic processes in a conductive layer having the finite width 2a (i.e., with
allowance for the transverse edge effect). It is assumed that the magnetic
field in the clearance of the inductor was plane-parallel (see the article by
Yu. A. Mikel'son in the present collection). In particular, this work obtained
the expressions for the electromagnetic pressure Pe and the power P_. Assum-
ing that a = «» in these formulas, i.e., assuming that the width of the plate
was infinitely large, they were transformed into

p=ﬁ?§flf032 (81)
and e
1
Pa= 15 4abltof B2, (82)

i.e., they correspond to the approximation of the solution of R. A. Petrovich
in the case of T >>§ given above. Here e' = ¢ E_; B is the induction in the

8
clearance during no-load operation.

The theory for electromagnetic processes in an infinitely wide layer,
located in a traveling magnetic field, has been developed in greater detail
than in layers of finite width, since a mathematical analysis is sliwpler.

REFERENCES

1. Ollendorff, F. Einheitliche Theorie der Drehfeldmaschinen (Unified Theory
of Rotating Field Machines). Archive f. Elektrotechnik, 24, 2, 1930.

35



10.

11.

12.

13.

14.

36

Lopukhina, Ye.M. TIssledovaniye asimkhronnogo dvigatelya s rotorom v
vide pologo tsilindra (Study of the Asynchronous Engine with a Rotor in
the Form of a Complete Cylinder). Elektrichestvo 5, 26, 1950.

Tyutin, I.A. Mekhanicheskiye sily v begushchem magnitnom pole (Mechanical
Forces in a Traveling Magnetic Field). V kn: Voprosy energetiki (In
the Book: Problems of Energetics), 3. Izdatel'stvo AN Latv. SSR, 1955.

Tyutin, I.A. Vvedeniye v teoriyu induktsionnykh nasosov (Introduction to
the Theory of Induction Pumps). Trudy Instituta Fiziki, AN Latv. SSR,
8, 1956.

Tyutin, I.A. Elektromagnitnyye nasosy dlya zhidkikh metallov (Electro-
magnetic Pumps for Molten Metals). Riga, 1959.

Tyutin, I.A., Yankop, E.K. Elektromagnitnyye protsessy v induktsionnykh
nasosakh dlya zhidkikh metallov (Electromagnetic Processes in Induction
Pumps for Molten Metals). Trudy Instituta Fiziki AN Latv. SSR, 8, 1956,

Liyelpeter, Ya.Ya., Petrovich, R.A. K teorii ploskikh induktsionnykh
nasosov (Theory of Plane Induction Pumps). TIzvestiya AN Latv. SSR,
Seriya Fizicheskikh i Tekhnicheskikh Nauk, 1, 1964,

Liyelpeter, Ya.Ya., Tyutin, 1.A. Metodika rascheta induktsionnykh nasosov
dlya zhidkogo metalla (Method for Designing Induction Pumps for Molten
Metal). Trudy Instituta Fiziki AN Latv. SSR, 8, 1956.

Mikel'son, Yu.A. Provodyashchiy sloy v begushchem elektromagnitnom
pole dvukhstoronnego nesimmetrichnogo induktora (Conductive Layer in a
Traveling Electromagnetic Field of a Two-Sided Non-symmetrical Inductor).
Izvestiya AN Latv. SSR, Seriya Fizich.i Tekhnicheskikh Nauk, 2, 1965.

Veze, A.K., Krumin', Yu.K. Ob elektromagnitnoy sile, deystvuyushchey
na beskonechno shirokiy provodyashchiy sloy v begushchem magnitnom pole
ploskikh induktorov (Electromagnetic Force Acting Upon an Infinitely
Wide Conductive Layer in a Traveling Magnetic Field of Plane Inductors).
Magnitnaya Gidrodinamika, 4, 1965.

Kirko, I.M. Kriterii podobiya elektrodinamicheskikh yavleniy pri otnos-
itel'nom dvizhenii magnitnogo polya i provodyashchey sredy (Criteria
for Similarity in Elektrodynamic Phenomena During the Relative Motion
of a Magnetic Field and a Conductive Medium). V kn: Voprosy energetiki
(In the Book: Problems of Energetics), 3, 1955.

Veze, A.K., Liyelausis, 0.A., Petrovich, R.A., Ulmanis, L.A. Provodyashiy
sloy v begushchem elektromagnitnom pole odnostoronnego induktora (Con-
ductive Layer in a Traveling Electromagnetic Field of a One-Sided In-
ductor). V kn: Voprosy magnitnoy gidrodinamiki (In the Book: Problems
of Hydrodynamics), III. Izdatel'stvo AN Latv. SSR, 1963.

Veze, A.K., Ulmanis, L.Ya. Raspredeleniye elektromagnitnogo polya i
ponderomotornykh sil v beskonechnoy provodyashchey polose, pomeshchennoy
v begushchem magnitnom pole odnostoronnego induktora (Distribution of
the Electromagnetic Field and Ponderomotive Forces in an Infinitely
Conductive 'Band Placed in a Traveling Magnetic Field of a One-sided
Inductor). 1In press.

Vaynberg, G.S. K teorii ustroystva dlya elektromagnitnogo peremeshivaniya
rasplavlennogo metalla v dugovykh elektropechakh (Theory of Equipment
for the Electromagnetic Mixing of Molten Metal in Arc Electric Furnaces).
Elektrichestvo, 2, 1958.



15.

16.

17.

18.

19.

20.

21.

22.

23.

24,
25.

26.

27.

28.

Vaynberg, G.S. O vybore chastoty ustroystv dlya elektromagnitnogo per /42
emeshivaniya metallov v elektropechi (Selection of Equipment Frequency
for Electromagnetic Mixing of Metals in an Flectric Furnace). Elektri-
chestvo 5, 1958.

Kochnev, E.K. K teorii ustroystv dlya elektromagnitnogo peremeshivaniya
raspladlennogo metalls (Theory of Equipment for Electromagnetic Mixing of
Molten Metal). Elektrichestvo, 7, 1959.

Kochnev, E.K., Rezin, M.G. Issledovaniye ustroystva po elektromagnitnomu
peremeshivaniyu rasplavlennogo metalla (Study of Equipment for Electro-
magnetic Mixing of Molten Metal). Izvestiya Vysshikh Uchebnykh Zaved-
eniy, Elektrotekhnika, 9, 1962.

Vol'dek, A.I. Toki i usiliya v sloye metalla ploskikh induktsionnykh nas-
osov (Currents and Stresses in the Layer of Metal of Plane Induction
Pumps). Izvestiya Vysshikh Uchebnykh Zavedeniy, Elektromekhanika, 1,1959.

Yanes, Kh., I. Uchet vliyaniya vtorichnoy sistemy v lineynoy ploskoy mag-
nitogidrodinamicheskoy mashine (Influence of the Secondary System in the
Linear Plane Magnetohydrodynamic Machine). Trudy Tallinskogo Politekhn
Instituta, Seriya A, 197, 1962.

Vortnichuk, N.I., Krutyanskiy, M.M. O vybore optimal'noy chastoty toka
statora pri peremeshivanii zhidkoy stali s pomoshch'yu begushchego mag-
nitnogo polya (Selection of the Optimum Frequency of the Stator Current
When Molten Steel is Mixed by Means of a Traveling Magnetic Field). V
kn: Voprosy magnitnoy gidrodinamiki i dinamiki plazmy (Problems of Mag-
netic Hydrodynamics and Plazma Dynamics). Izdatel'stvo AN Latv. SSR,1959,

Ostroumov, G.A. O peremeshivanii rasplavlennykh metallov begushchim magn-
itnym polem (Mixing of Molten Metals by Means of a Traveling Magnetic
Field). V kn: Voprosy magnitnoy gidrodinamiki i dinamiki plazmy (Prob-
lems of Magnetic Hydrodynamics and Plazma Dynamics). Izdatel'stvo AN
Latv. SSR, 1959.

Ostroumov, G.A. Fiziko-Matematicheskiye osnovy magnitnogo peremeshivaniya
rasplavov (Physico-~Mathematical Bases of Magnetic Mixing of Melts.).
Metallurgizdat, 1961.

Schilder, J. Pohybujici se elektromagnetické pole ve vodivém prostredi
bectrogaggggéc Field Motion in a Conductive Medium). Elektrotechnicky
Ulma%%g: L)Ya. "Beskontaktnyy raskhodomer dlya zhidkikh metallov (Non-Con-
tact Flow Meter for Molten Metals). Byulleten' Izobreteniy, 19, 1962.
Ul'manis, L.Ya. Fizicheskiye yavleniya pri induktsionnom vozdeystvii beg-
ushchego magnitnogo polya na sloy zhidkogo metalla (Physical Phenomena
During Induction Interaction of a Traveling Magnetic Field on a Lay-

er of Liquid Metal). Avtoref. Kanddiss. (Author's Abstract of Candi-
date's Dissertation). Riga, 1963.

Ul'manis, L.Ya. K voprosu o krayevykh effektakh v lineynykh induktsionnykh
(Problems of Edge Effects in Linear Induction Pumps). Trudy Instituta
Nasosakh Fiziki, AN Latv. SSR, 8, 1956.

Watt, D.A. A Study in Design of Traveling Field Electromagnetic Pumps
for Liquid Metals. Harwell, 1955.

Valdmanis, Ya.Ya. Elektromagnitnyye sily deystvuyushchiye na beskonechn-
uyu provodyashchuyu polosu v pole odnostoronnego induktora trekhfaznogo
toka (Electromagnetic Forces Acting Upon an Infinite Conductive Band in
the Field of a One-Sided Inductor of Tri-Phase Current.) Izvestiya AN
Latv. SSR, Seriya Fizich. i Tekhnicheskikh Nauk, 1, 1965.

37




HIGHER SPATIAL, HARMONICS OF THE MAGNETIC FIELD OF AN /43
INDUCTION MHD MACHINE

Yu. Ya. Mikel'son

1. Introduction

In terms of their principle of operation, induction MHD machines are
similar to asynchronous electric machines. Just as in asynchronous engines,
the winding of the stator produces a traveling magnetic field, under the in-
fluence of which currents are induced in the molten metal of the MHD machine
(in the rotor of the asynchronous machine). The interaction of these currents
with the magnetic field of the stator leads to the formation of ponderomotive
forces. Therefore, there is a certain similarity between certain problems in-
volved in the theory of asynchronous engines and induction MHD machines. One
of these problems is the deviation of the traveling magnetic field from a
sinusoidal one. This deviation is caused by several factors. The most im-
portant factor is the spatial distribution of the stator winding and the non-
uniformity of the air gap (projections and grooves on the steel surface of the
stator). These factors occur both in asynchronous engines and in MHD machines.
However, they may have a different influence upon the operation of the mach-
ine due to differences in both devices. We would like to emphasize the follow-

ing differences:

(1) The "rotor" of the MHD machine represents a solid, liquid conductive
medium, in contrast to the discrete conductors of the rotor winding of the
asynchronous machine;

(2) The clearance between the rotor and the stator of the asynchronous
machine may differ greatly from this clearance in the induction MHD machine;

(3) The stator of the induction MHD machine may be both one-sided and
two-sided;

(4) The operational regimes of the machines under consideration are
different. As a rule, the asynchronous engines operate with slipping which is
close to zero. Not all of these differences play the same role. An increase
in the clearance between the rotor and the stator in a MHD machine, as compared
with an asynchronous machine, reduces the role of the higher spatial harmonics
(h.s.h.), while the wide region of slippings and the solid "rotor" of 144
the MHD machine may lead to an increase in the influence of the h.s.h. upon
it.

Many authors have investigated the harmonics produced due to the spatial
distribution of the multiphase stator winding, and have determined their in-
fluence upon the motion of the rotor. The results derived from a large number
of these works have been generalized in (Ref. 1).
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Figure 1

Infinite Layer of a Conductor (Above) and a Magnetic Current (Below). The
Linear Current Load (Ref. 12) is Given on the Surface of the Magnetic Circuit.

The spatial distribution of a winding of multiphase current leads to
the fact that a magnetic field is produced which consists of an infinite series
of harmonics traveling in the opposite directions. 1In particular, harmonics
of the orders 6k + 1 occur for a symmetrical, three-phase winding, where
k=0, + 1, +2,... The positive and negative harmonics have different dlrectlons
of motion. The number of grooves per pole and per phase and the contrac-
tion of the winding step are described by means of the so-called winding co-
efficients kwin . In the majority of cases, the h.s.h. are disregarded when

v
the electromagnetic processes in a MHD machine are investigated (Ref. 2-5).
In many cases, this is valid - for example, in the case of large non-magnetic
clearances, and a sufficiently thick conductor layer. Due to the smallness
of the clearance between the rotor and the stator, the h.s.h. play a signifi-
cant role in asynchronous motors. Therefore, special measures should be taken
to suppress them. With respect to MHD machines, the influence of the h.s.h.
in a molten metal and in a stator upon e1ectrodynam1c force density and energy
losses has not been studied sufficiently (Ref. 6-11).

I. M. Postnikov (Ref. 12) has presented a method for computing the losses
from h.s.h. in the rotor of an asynchronous machine. His method may be employ-
ed to calculate the losses in a MHD machine with a one-sided inductor for a
sufficiently thick layer of molten metal (theoretically infinite) (Figure 1).
However, this method is not applicable for calculating losses in a MHD 145
machine with a two-sided inductor. 1In the case of the two-sided inductor,
the layer of molten metal has a finite thickness in contrast to the infinitely
thick layer (Ref. 12). The windings of the stator with magnetic circuits are
located on both sides of the molten metal layer.

met
The electromagnetic fields in the molten/o% 2;MHD machine may differ
greatly in the case of a two-sided and a one-sided inductor of the magnetic
field (Ref. 6). In addition, the determination of the expansion coefficients
(Ref. 12) of linear current loading in series with respect to individual har-
monics, when there are grooves on the surface of the stator, is an independent
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problem (Ref. 18). These coefficients were assumed to be known on the basis
of the theory of electric machines in (Ref. 12).

The influence of h.s.h. on the density of the electrodynamic forces and
Joule heat losses in the model of a MHD machine with a two-sided symmetrical
inductor was investigated in (Ref. 10). It was shown in this report that in
several cases the h.s.h. makes a significant contribution to the energy losses
and to the density of the electrodynamic forces.

The influence of a non-uniform air gap upon the motion of the rotor of
an asynchronous machine was also investigated in (Ref. 1). This problem may
be reduced to determining the induction of the magnetic field on the surface
of a smooth medium (rotor) with a magnetic permeability of p = « and electric
conductivity of ¢ = 0, when there is one infinitely deep groove (Ref. 13) or
an infinite series of grooves (Ref. 14) in another medium (in the steel of the
stator) also with w = » and ¢ = 0 (Figures 2 and 3).
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Figure 2

Infinite Groove in a Magnetic Circuit Opposite a Smooth Magnetic Circuit
(Ref. 1)

For the theoretical computations, it is assumed that the dimensions /46
of the portions of the systems shown in Figures 2 and 3 along the z-and y-
axes are infinite.

The difference of the magnetic potentials between a smooth and
serrated medium with p = «» and ¢ = 0 is assumed to be constant. The problem
may be solved by the method of conformal mapping on the basis of the theory of
the scalar magnetic potential. The presence of grooves leads to a decrease in
the average magnitude of the induction on the smooth surface of the "rotor'.
This 1is taken into account by the Carter coefficient in the first approximation
in practical applications (Ref. 1). The exact distribution of the field in the
clearance is determined in (Ref. 14). However, in view of the cumbersome nature
of the final results, the amplitude of separate harmonics corresponding to the
projections was calculated only in this special case by Freeman (Ref. 16).
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Figure 3

Infinite System of Grooves and Projections Opposite a Smooth
Magnetic Circuit (Ref. 14)

A.T. Vol'dek (Ref. 15) has provided a simplified method for calculating these
harmonics. For example, S. P. Pecheritsa (Ref. 17) has employed his methods.
However, even for asynchronous motors it is impossible to assume that the prob-

lem of serrated pulsations has been studied exhaustively. The problem remains open

regarding the distribution of the field within the clearance, and not only on
the surface of the "rotor', regarding the influence of the depth and width of
the grooves upon this distribution, as well as other problems. A conductive
medium is located within the clearance in a MHD machine. The distribution of
the field in this medium, taking the non-uniformity of the clearance into ac~
count, is also of interest. This distribution influences the density of elec-
trodynamic forces and energy losses in an induction MHD machine. A theoretical
investigation of this problem was performed in (Ref. 18), and some of the re-
sults derived in this study will be investigated below.

2. H.s.h. From the Spatial Distribution of the Winding with /47
a Smooth Steel Surface of the Stator

There are several factors which complicate a theoretical investigation
of the influence of h.s.h. upon the electromagnetic processes in an induction
MHD machine. Any real MHD machine has finite dimensions, which completely de-
termine the properties of the materials from which the channel of the MHD mach-
ine, the stator, and the winding are made. The velocity of the molten metal in
the channel of the MHD machine is not comstant over the cross-section. It is im-
possible to make strict allowance for all of these factors. Therefore, several
simplifications must be employed in theoretical computations, The finite dim-

ensions of the MHD machine are disregarded in an investigation of the role of
h.s.h.
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Let us investigate the simplified model shown in Figure 4.
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Figure 4

Non-Symmetrical Model of a MHD Transformer with Conductive
Channel Walls

Here, region I is the working component of the MHD machine with con-
ductivity o and magnetic permeability Hge The regions II and III represent the

non-magnetic clearance.

The winding of the stator is usually located in special grooves of the
stator steel. The grooves make the non-magnetic clearance of the MHD machine
non-uniform, but we shall first investigate the smooth steel surface of the
stator (the influence of the grooves will be investigated in section three).
In this connection, let us place the winding of the model of the stator (see
Figure 4) in the clearance between the channel of the MHD machine and the sta-
tor. By changing the distances dl and d2, we may obtain any arrangement of

the winding in the clearance. Thus, in the case of dl = 21 and d2 = 12 the

winding lies on the steel surface of the stator. The winding (only one phase
is shown) consists of q linear plates having the thickness h (q grooves per
pole and per phase). The distance between the plates in one phase is tl - h

(the width of the "projection" is t) - h). The distance between the for- /48
ward and inverse currents of one phase is )A; the polar step is 1; (the ratio

A characterizes the contraction of the winding step).
T

Regions IV and V in Figure 4 are the channel walls of an induction MHD
machine with conductivity O.s magnetic permeability Moo and thickness 61 and

8, .
2
every point and equals v(0,0,v). It is assumed that the current is a sin-
usoidal current with the angular frequency w, and is uniformly distributed
over all plates of one phase. The current amplitude of one phase of the wind-
ing in region IT is Ijjp; in region III it is Ipy. The phase shift between

It is assumed that velocity of the medium of region I is identical at
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the currents in the upper and lower inductors is ¢. A medium with p = « and
o0 = 0 is located behine the winding. The other geometric dimensions are
shown in the figure.

After a theoretical investigation of the model of the MHD machine shown
in Figure 4 (see appendix 1), we may find the z-component (which is averaged
over time and the coordinates) of the force density

ff-:thv (l)

v
the x-component (which is averaged over time and z-coordinate) of the force
density

f== fo\’(x)r (2)

where v = 6k + 1, k = 0, +1, +2, ...; £, gives the force demsity of the vt
harmonics of the traveling magnetic field. fvv may be positive or negative,

depending on the slipping. The mean Joule heat losses QJoule in the chan-

nel of the MHD machine may be obtained by means of the x-component of the
Poynting vector:

Re S, = L [
)

(3)
The energy losses in the molten metal* are
(4
QJO 1 =Re [le |x=b_le lx=—b],
in the channel walls
Q v = Re[S,ivle=s+s1—Se1v le=s): (5)
Qo =RelSevlem—p—21—S,v =), ©

where Re designates the real part.

In numerical calculations of the force density and Joule heat loss- /49
es in an induction MHD machine, it is advantageous to introduce the relative
force density and Joule losses:

5 26

fz .fzmr E (7)
b

? =Q (8)

The contribution made by the h.s.h. to the force density and Joule heat
losses is the difference between the sum of the series and the first term of

* Energy losses in a vertical column with unit transverse cross-section,
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the series (1), (2).

The computations of the force density and Joule heat losses according to
formulas (7) and (8) are cumbersome. The computations were performed on a

BESM-2 in the Computing Center of Lenningrad State University imenii P. Stuchok
for the special case when

6|=62=0, dl=d2=ll=12=d, A:‘r’ h=0,

=0, ] == = =—‘:- =] M
1] o=loo=1o, ¢ 3q g=1; 3; 5,

and it was found that the contribution made by the h.s.h. to the force den-
sity and Joule heat losses may be quite significant for specific values of the
parameters. In this special case, fz and QJo were expressed by means of the

following dimensionless parameters:

d—b oL T
§= g= E'qn—z—, § zr

T ]

(9

-1
S=17 57 andq
The computations of f_ and aJo were performed for a constant linear cur-

0

cal calculation. Thus, Table 1 presents the relative force density in the case
of e =1, £ = 20, q = 1 and different values of ¢ and s. Table 2 presents the
relative Joule heat losses in the channel of a MHD machine for the same values
of the parameters. As may be seen, the contribution made by the h.s.h. to the
force density and the Joule heat losses depends on the paramteter . The role
of the h.s.h. is greatest for small values of the parameter r. Thus, for ex-
ample, in the case of ¢ = 10‘3, £§=20,e=1,q=1, s =1, le comprises

rent density J, = 3%g . We shall present some results derived from the numeri-
T

only 727 of fz. The situation is the same for QJo and QJo 1 In the case of

£ > 0.1, it is practically impossible to take into account the influence of
the h.s.h.. It must be noted that in the case of s = 1 - i.e., when the molten
metal is immobile - the contribution made by the h.s.h. is minimal.

It thus follows that it is impossible to estimate the influence of /51
the h.s.h. in the case of s = 1; it will be too low. The tables present

fz and Q in the case of q = 1, which corresponds to the case in which the

Jo

contribution made by the h.s.h. is greatest. For small ¢, q > 1 in real MHD
machines. An increase in q leads to a reduction in the role of the h.s.h..
This may be readily seen from the graphs shown in Figures 5 and 6.

Thus, for example, Figure 5 presents a graph showing the dependence of

the dimensionless force density fz on the slipping (sum of the series and first

term of the series) for the following values of the dimensionless parameters
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3.72, £ = 10, q = 1; 3:5.

L= 10’2, e =

(Ref. 10)

losses on the slipping
Tt should again be noted

that the first term of the series of the force demsity and the Joule heat loss-

Figure 6 shows the dependence of the Joule heat
es differs theleast from the sum of the ent

for the same values of the dim

less parameters.

ension

the case of s = 1.

i in

1re serilies

.

Thus, for example, in the case of s = 1 the entire force density practically co-

the case of s = -2

th the first term of the series (1), whereas in

i

incides w
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(generator regime) and in the case of q = 1 the difference is a factor of four.
In the case of q = 3 the difference is a factor of 1.62, and in the case of
q =5 - 1.24 (see Figure 5). The situation is the same for the Joule heat

losses (see Figure 6).

It follows from the tables and graphs presented above that allowance /52
for only the first harmonics of a traveling magnetic field does not always
lead to a correct result. A rigorous distinction must be drawn between the
region of the parameters (f, s, q, etc.), where it is possible to disregard
the influence of the h.s.h. and where it is impossible to do so.

3. Influence of an Inductor Surface Having Projections on the
Electromagnetic Field Distribution in a Conductive Band

The grooves and projections on the steel surface of the stator deform
the electromagnetic field in the molten metal of a MHD machine. This distorted
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field may be expanded in series and we thus obtain the so-called harmonics
"corresponding to the projections" (Ref. 15). However, this expansion is
rendered more difficult by the fact that the "distorted field" is unknown,
which must be expanded in series. 1In the air gap of asynchronous machines,
this field may be found under the following assumptions (Ref. 14):

(1) The rotor and the stator have the conductivity o = 0 and magnetic
permeability u = = (see Figure 3);

(2) The grooves on the surface of the stator are infinite or finite in
depth;

(3) The rotor may be smooth or may have grooves;

(4) A constant difference of the magnetic potentials is given between
the rotor and the stator;

(5) The dimensions of the system (Figure 3) along the y- and z-axes
are infinite.

The definitive results derived from the study by Coe and Taylor (Ref. 14)
are not suitable for numerical calculations. In practice, the method of Vol'dek
(Ref. 15) is employed more frequently to determine the amplitudes of the har-
monics corresponding to the projections., In this method, the grooves on the
rotor surface influence the magnetic permeability of the air gap. The expansion
in series of the approximate periodic curve of the magnetic conductivity leads
to the harmonics corresponding to the projections. 1If allowance is only made
for the first term of the expansion, this produces a decrease in the average
induction in the gap due to the non-uniformity of the air gap by a factor of

k6 —- where kd is the Carter coefficient (Ref. 1). For the most part, in prac-~
tice the non—uniformity of the air gap is taken into account by means of this
coefficient -- i.e., it is assumed that it is equivalent to a certain increase

in the uniform gap.

There is a conductive medium in the air gap in MHD machines. The electro-
magnetic field in this medium differes greatly from the electromagnetic field
in the air gap of an asynchronous machine. The depth of the grooves on the
steel surface of the stator has a finite value. It is not sufficient to take
into account the non-uniformity of the air gap in the MHD machine by means of
the Carter coefficient.

In this connection, the study (Ref. 18) discussed an approximate /53
model of the MHD machine (Figure 7) in oxder to allow for the influence
of the non-uniformity of the air gap upon electromagnetic processes in the MHD
machine. This model has infinite dimensions along the y- and z-axes. Regions
III and V have the conductivity o = 0, and the magnetic permeability u = Hge

Region IV is the conductor with the' conductivity ¢ and magnetic permeability
Uge Region I is a groove occupied by an alternating current with constant den-

sity amplitude jy and with angular frequency w; regions II and II' are the
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empty grooves. The vertical lines z = - %‘and z =7 divide half of the period

(the system has a period along the z-axis equalling 2t1). The geometric dim~
ensions of the regions are shown in the figure.
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Figure 7

Model of the MHD Transformer with a One~Sided Inductor, with
Allowance for Non-uniform Gap

The empty grooves are left for loops of the winding for the second and
third phases. This system corresponds to a one-sided inductor having a tri-
phase current with the number of grooves per pole and phase equalling unity.
The solutions obtained make it possible to write the expression of the vector
potential for a two-sided symmetrical inductor (Ref. 18) and in other special
cases.

According to (Ref. 18), the vector potential A(0,A,0)* in different
regions (see Figure 7) has the following form.

[= - -]
. h Am (x+ln)
A= 2 m [ i Gl -
i mz;gié Kn@namn + ptofoln8mo) AL, COSAmz (10)
1 .
'—‘2_ll0]0(x+ln)2,
1 /54
® o ch5 Am(x+1,)
2 " -
A“=m>=:o éoKh‘Pkﬁmh 1 cos nm (1—37?—2 - %), (11)
chglmg
® o ch%hﬁx+&)
A= 3 ¥ KipiBmn i cos num (_1_'5_;35 - -;—), (12)

m=0 k=0 ch fkmln

* The dependence on time elwt is excluded in all formulas for the vector
potential.
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(=]
A= Z K,,,{ch am(x—38+b)chymb+
m==0
+[_:—"' shap(d—a—b6)chon(x—a) —

_Am COS Om2
. cha,(a+b—98)sh am(x—a)] sh ymb} had’

Av= 2 K, [Ch am(a+b—9)chym(a+b—x)—

m==0

-4
—*shan(3—a—b)sh Vm(x““—b)]ccf:::’

Ao i‘K ch am(x—8)
v L m chand COS am2,

where

2r n
Am=-pm; am= —(2m+1);
Ym=Yom?+iopow;
a
(pm={ch am(b—08)chymb+ [?’1’ shan(d—a—b)chana+

Y, 1
+-Zcham(d—a—b)shan -
P m(d—a—~b)sha a]ShY"'b}chamb’

'.}),,,=={sh am (b—8)ch ymb— [;E shaon(d—a—b)sh ana+
m

m ! l
+__‘ch d—a—b — = .
(lm( a )Ch(lma]Sh‘Ymb}cl 5’

1 €n
Omp ="

———— COS M sin ney;
T shz_mz ks

w ’ 48;;2—-"12 3

+sinn (s,,—— 2+ l”;

1 .
Bmk=— _Aen [cos amsinx (e,+2k+l)+

3

eh=2h—t(2k+l).

The coefficients Km are determined from an infinite system of

tions

(13)

(14)

(15)

(16)

(17)

(18)

(19)

(20)/55

(21)

(22)

equa-
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[~ -]
Y. KmO®rin=2u0joln¥n,

where 1 ’
ehm—fpm Z A, (4avmavk th )\v‘ +pvmpvk th l l )
v=1 (24)
—% “mq’makm;
_ sin ney | (25)
ney,
8 { 0, ksEm,
11 k=m. (26)

Thus, the determination of the vector potential may be reduced to sol-
ving an infinite system of equations (23)., Let us investigate certain spec-
ial cases (Ref. 18).

1. There is no conductive band IV in the clearance, In order to de-
termine the vector potential in this case, we may set ¢ = 0, As a result,
we have

Pm= 1, Pm= —th amd, Ym=Cm,

= e 1
Orm= 2 A, (4av,,,a,,k thA,l,+ B,mPyx th 7u,,)+

v=1

+7‘:' am th amddam,

- -}
Aﬂl=AlV=AV= Z Km ch amd

m=0

COoS am2.

27)
II, In the case of the two-sided symmetrical inductor, the ex- [56
pression for the vector potential may be written as follows:

A= b (= _
m ”EOK,,, [c om (¥ —a)ch ynb (28)

Y COS U2
—=Zsha,, (x— U2 Ime
a, " (£ —a)sh vme chamd ’

(29)
Ay= Z KmCh Ym (0 — x) cos a'": .

The coefficients Km are again determined from system (23), where

(pm—[chumachy,n(b—'a)-i- 2 sh ama shym (06— a)J 16' (30)

m
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¢m={—shamachym(b—a)+:L—"’-Ch oma sh ym (86— a) !

chamd’ (31)
Formulas (28) -- (31) were obtained under the assumption that a + b =
= § —— i.e., in the case of a two-sided symmetrical inductor, the horizontal

plane of symmetry passing through the middle of the conductive band corres-
ponds to the boundary of the medium with p = « and ¢ = 0 in the case of x = §.
The induction vector of the magnetic field B rot A is perpendicular to this
plane of symmetry.

If there is no medium with y = « and o 0 above the conductive band,
we have the following expression for the vector potential (Ref. 18):

oo
A= Z Kne-ami3+0) {e_am(x._a)ch Ymb +

m=0

+[a——"’ ch o, (x—a) —Tm g Om (x—a)] sh ymb} COS a2, (32)
YI'I am
o)
A= Y, Kne-emlath) [ch ym(a+b—x)—
m=0 M
—ii sh ym(x—a—b) | cos amz, (33)
"m
Qo
Ay= Y Kne-%m*cos gmz. (34)
m=0
The coefficients Km, as always, are determined from the system /57
(23), where
Pm=e-em'a+d) {eamﬂ chynb+ [i—"’ chana+ ;L'" sh ama] sh y,,,b} , (35)
m

m
Ym= —e~Cmla+d) {aama chymb+ [% sh a,.a+ :—’" ch a,,,a] sh ymb}.
m m

(36)

Thus, it is possible to find the vector potential in other special
cases. It must be pointed out that when the depth of the grooves ln strives

to zero -- so that the total current in the groove does not change —— i.e.,
. I
joln=l—z‘?=const,

the expression for the vector potential changes into a similar one for an
inductor without grooves and projections (Ref. 6-10).

Summing up the vector potential of three phases, we may obtain the
traveling magnetic field, with allowance for the non-uniformity of the air
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gap.

In the final analysis, determination of the influence of grooves and
projections may be reduced to an investigation of an infinite system of equa-
tions (23). This system requires additional analysis, in order to establish
the rapid decrease in the coefficients Km when m increases, and the analysis

requires additional computational work. It may be performed most readily on
computers.

APPENDIX

4, Results of Analytical Computations

The results derived in (Ref. 11) are employed to determine the distrib-
ution of the force density and the Joule heat losses in the channel and in
the walls of the model of the induction MHD machine (see Figure 4). A sol-
ution of the equation for the vector potential A(0,A,0) was obtained in this
study:

A = 3 Z [av( 1) e~V 4+ ay(?)eyvx] eflosyt—ay2’) t,
v

-3
Ay=3Y [g Ve~V + gv('-')evsx] elot-a 2,

v
(4 (4 .
Ay=3 ) [c,Ne-V* ¢, Devy*] ghtot-a,2),
v

where , U 58

ﬂ . 2 .
a=—; a,=av =Yooy +iouems,;

v=Ya,2+iouow; v=6k+1; k=0, =1, *2,.

a, “)_K [Lo]uge(pch (lv(lz—dz)Ny'f'Mo[m ch (lv([|—- |)Lv .

Wi D, (G, L,—M,N,) ’
a, =K poloi ch o, (Li—d) My + Holo2e' ch a, (I2—d2) Gv
v Wiv T(M,N,—G,L,)
g« 1 [(1 + h) a,Meti—v)e 4 ( 1- 1) g, @e0i+v,0]
2 Lt T
g® _1 (1 — 1) g me-aritv e o (14 D)g @etv,~¥0 |,
Z|\ 7 v,

* The 2z' axis is connected with the moving medium I.
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¢y = [(1 + %) a,Me(ry—vy)o 4 (1 - Ix),,vme—(v,ﬂﬁ)b] :
v

%

c,(2)=-;—[( ::)a (D elv,+vi)b 4 (1+"::) a,@etvi— v,)b]

v v

M y= %eﬂ“‘ﬁ

v

®[a, sha, (b+82—Ip) —

15 cha, (b+8:—lo) ]+ 270“ ghtmn [avsha, (b+8:—1) +

v

+1¢ cha, (648~ Lo)];

)t (PR S
Gy = v27" Pl las

A

al)[cz,, sha, ([,—-56—98;,)—

—Yicha, (I ~b—0;)]+ V2Y Yerp favsha, ([ —b—8,) +
v

+Yicha, (I, —b—8)];

Y=Y yob—v —
N,= B “ eV e, sha, (I —b—8) —ycha, ({—b—8)]+
LB 0,
21 WD Bt [0 sha (f—b— 61) +v5cha, (h~b—8)):
L _Y Ty Y ba—v
v="g— V" "V [a,sha, (b+08;—1) — ycha, (b+8:— )]+

2

v

T+ o
UL i Y g, 0V e (@, shav (b+08y—12) +v5 cha, (b+8;—12)].
v

The winding coefficient Kwi\) of the harmonics of the order v has the follow—
ing form (Ref. 10):
K‘Wi\_)__ Kl]thv Khnv,

where the coefficient of the winding distribution is

the contraction coefficient of the winding step is

AV

K, =sing—,
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and the coefficient depending on the width of the inductor plates (winding
coefficient "of the groove opening' [Ref. 15]) is

2t . mvh
Khy =i Smi2~t.

The complex expressions of the magnetic field induction B and the curr-
ent density j may be readily obtained according to the following formulas

JA
B= j=—g—
rot A, j oSF-

According to (Ref. 11), for region I we have:

B = 3 = ’
zl EV: Yy [av (2)eVy‘_ a, (7] VVX] el(&)svt—ayz ),

Bxl = 3‘2 a, [av (2)e-vv 4 a‘(z)evvx] el(msvt—avz’)'
v

}yl = — 3i(00’2 Sy [av (l)e-v‘,x+av'(2)e~pv x] e"(msy’—av'-'),
v

The expressions for the induction B and the current j in regions IV and /60
V are similar to the corresponding expressions in region I. However, in—(z)
stead of the coefficients a and a, we must substitute gv(l and g,

(region IV) or ¢ (region V) instead of z' ~ z, ¢ - o, - v¢ , All s
v Ty v v

c
must be set equal to unity.
Employing the expressions obtained for the magnetic field induction

and current density, we may find the force density £ which is averaged over
time and the coordinates (Ref. 9):

fl,=Zfz[y’

fxl = Z fxlv(x)*:

where

’ 2
Fa =§c§x_o aysv |z, () [(1 + |avml ) sh(2b Re yy)

a,M | 26Rey,
a,®\ sin (2 Im yv&){
+2Re (av“’) TobTmy, |’

96w la,@?
Fopy=— _2_.{“* sy Re 1|av(1),z[la_vf(l_”' e2Rev,x _

* fy71 is averaged over time and the z-coordinate.
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2,
_e—2Rev,x_2l Im “ezl Imvv
a,m

* is the sign of the complex conjugate. In regions IV and V, the expressions
for the force densit¥ are simjilar. As indicated in the appendix, we need
only substitute a, and a\)'2 by gv(l and g, etc.

Let us investigate several special cases (Ref. 2, 3, 7, 8, 10). The
formulas for the force density and the Joule heat losses remain the same in
every case, only the coefficients a ) and a\)(Z) change.

Thus, we must substitute 61 = 62 =0, Y\)c =o, in the coefficients

a\)(l) and a\)(z), in the case of a two-sided non-symmetrical inductor without
conductive channel walls of the MHD machine. After this, we obtain the /61
following expressions M\), Gv’ Nv’ L\) for the coefficients av(l) and a, 2y
My=e"’[aysha, (b—1p) —y,cha, (b—15)],
G,=e "[a,sha, (I, —b) —yycha, (I, —b)],
Ny=e"[a,sha, ({,—b) +y,cha, (,—b)],

Ly=eW[a,sha, (b—1) +yycha, (b—1)].

In the case of a one-sided inductor without conductive channel walls of the

MHD machine (Ref. 8), we must set 101 = 0, JLl = oo, Gl = 62 =0, ¢ =0 in

order to determine the coefficients av(l) and av(z) . In this case, we have
a,0=K . Boly cha, (Li—ds) N,
wiv g GL,—MN, ’

(2) — p'O’?O . ch a, (12 - d2) G'I
A=K et MN.—GL, '

where M\), Gv’ N\)’ L\) are the same as in the case of a two-sided non-symmetri-

cal inductor.

For a two-sided symmetrical inductor without conductive channel walls
of the MHD machine (Ref. 9, 10), we must set

In=Ilp=Il, 9=0, L=L=I dy =d;=d, 8 =08,=0.

After this, we obtain

aW=a, (2)_;10] cha, (/—d)
2t o,chyybsha, (I—b) +yyshybcha, (I—b) "
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The method indicated above may be employed in other special cases to

obtain the coefficients aV which determine the distribution of the electro-

magnetic field, the force density, and Joule heat losses in the channel of an
induction MHD machine.

10.
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TRANSVERSE EDGE EFFECT IN PLANE INDUCTION MAGNETOHYDRODYNAMIC /63
MACHINES

A. Ya. Vilnitis

1. Formulation of the Problem

In the general case, a plane induction magnetohydrodynamic machine
(pump, generator) consists of two plane stators (inductors) with m-phase
winding, a plane channel with molten metal, and a thermal-insulation channel.
Figure 1 presents a sketch of a plane induction pump (1 - molten metal in the
pump channel; 2 - plane pump channel; 3 - diffuser; 4 - thermal-insulation
channel; 5 - pump inductor; 6 - framework of the magnetic circuit; 7 - proj-
ection of the magnetic circuit; 8 - groove of the magnetic circuit; 9 - groov-
ed insulation; 10 - inductor winding; 11 - front portion of winding).

| Al fT noA-A
1 RAERAAARNNI —
= e = o e
Hd E Ut ULﬁig _____
Al
Figure 1

The currents in the windings of the inductors flow in the transverse
direction, forming a traveling wave, The induced electromotive force pro-
ceeds in the same direction,which also forms a sinusoidal wave, which travels
along the inductor, The sign of the electromotive force changes to the op~
posite sign (half of the wave length) along the pole division t. The lines
of the induced currents must be closed and —- in view of the limited width
of the pump channel -- must be forced within the limits of the pole division,
and closed in the longitudinal direction, in which there is no supporting
electromotive force. This fact leads to attenuation of the induced curr- [64
ents. If the fact is taken into account that only the transverse current
component (in interaction with the magnetic induction component which is nor-
mal to the channel plane) produces the effective force (in the longitudinal
direction), then the so—-called transverse edge effect becomes clear: the
smaller the ratio between the channel width and the pole division, the smaller
the section of the closed current line over which the supporting current of
the electromotive force has an influence, and consequently the weaker is this
current and the smaller the effective force for one and the same magnetic
induction,

It must be immediately pointed out that this is an extremely simplified
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picture. The field of the induced currents is frequently comparable with the
primary field of the inductors, which causes the corresponding re-distribution
of these currents. The channel thickness of the MHD machine also influences
the current distribution over its width. As a result, it is far from simple
to make a quantitative determination of the transverse edge effect, and it
requires very detailed research.

The theory of induction MHD machines finds its source in the theory of
electric machines, and is today based to a significant extent on a system of
concepts developed by the latter theory. Therefore, we may draw a certain
analogy between problems of electric machine theory and problems in-~
volved in the theory of induction MHD machines. If the theory of electric
machines is regarded as one of the branches of Maxwell electrodynamics, this
theory may be called the electrodynamics of linear circuits with currents --
currents which are closely connected with a system of conductors of previously
specified directions, which are linear for the most part -- i.e., they have
a zero cross-section area. The entire group of specific concepts and re-
search methods provides a good orientation for the processes occurring in the
electric machines which are used most extensively at the present time --
transformers, electric engines, and generators. The theory of electric mach-
ines -- engineering science —— and the requirement for computational simplici-
ty which it entails plays a primary role, frequently moving a mathematically
precise description of the process to second place.

If a heavy conductor or an engine containing a heavy rotor is placed
in the groove of an electric machine, the electrodynamics of the linear cir-
cuits may become weak, and field theory must come to its assistance.
Since we may assume that the direction of the currents in the system is known,
no particular difficulties arise. This is the large rotor of infinite length,
the cylindrical inductor of the traveling field, or the plane inductor of
infinite width., Maxwell equations may be solved by tabulated functioms, and
we obtain a comparatively favorable picture of the one~dimensional skin-ef-
fect with respect to the radius of the rotor or the thickness of the plane/65
channel in pure form. Nevertheless, care must be taken in this comparatively
simple case, when trying to express the results obtained in the language of
the theory of electric circuits, which the theory of electric machines com-
pletely utilizes [see, for example, (Ref. 1, page 447)]. In the general case
of conductors having finite diemensions, it is difficult to introduce the
concept of resistance and inductance in an un-ambiguous and rational manner.

The following factor considerably complicates the problem of an engine
with a large rotor having finite length or of a plane inductor having finite
width: it is necessary to find not only the density of the current in the
rotor (or in the channel of the plane pump, respectively) but also the curr-—
ent direction, which changes from point to point. The rotor in the engine is
a solid body. In order to draw the corresponding analogy, it is necessary
to construct a solid plate having infinite length, but finite width,between
the plane inductors of the pump. Such a problem may be solved by the methods
of mathematical physics. The theory of heat conductivity, the theory of
elasticity, the theory of wave guides, etc. extensively employ tri-
gonometric series -- which is a specialized method of mathematical physics
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for solving partial differential equations in rectangular regions (for example,
in exactly the same way that Bessel functions are characteristic for cylin-

drical regions) in these branches of mathematical physics.

This is the form of the problem regarding the transverse edge effect,
in which we may today speak of its exact solution. The value of the exact
solution thus obtained should not be over-estimated, since by no means all of
the problem of the transverse edge effect in induction MHD machines has been
solved. A very daring simplification of the problem is based on the assump-
tion that a solid plate is placed between the inductors, and molten metal
is the working medium of the MHD machine. When searching for technical solu-
tions of the entire magnetohydrodynamic problem, it is very tempting to employ
the comparatively simple solution for the solid plate. The trigonometric
series thus obtained are orthogonal. Therefore, if we determine the averaged
density of the body forces

- 1
f=t vf [iB]av, o

f is obtained in the form of a unary series, and not a binary series, if the
current density j and the magnetic induction B are given by unary series. It
is obtained in the form of a binary series, and not a quadruple series, if jJ
and B are given by binary series. It is also possible to substitute the /66
initial unperturbed field B, (which would occur in the absence of a conductive
plate) in (1) and not the total field B, if this simplifies the computations
[see (Ref.2,p.186)]. However, maximum care must be observed. For a solid
body (1) has limited application. For a liquid working medium,

there is no guarantee that the pressure developed by the pump will not differ
significantly from that computed on the basis of (1). In particular, this
pertains to each type of deviation from the mean parameters of the machine.

In our opinion, averaging is a very risky procedure -- integration
over volume. The dependence

f=[jB] (2)

with j and B computed for a solid medium, is_of value for a liquid in many
cases, whereas the integral characteristics f does not take several important
factors into account. Therefore, it is valid to be interested in the total
distribution of j and B both in theory, and in structural practice.

In every report which has been published on the transverse edge effect,
it is assumed that the molten metal moves like a solid body. For purposes
of clarity, we shall consider the edge effect in induction pumps, although
the main results may be extended to the case of the generator regime,

In more recent studies (Ref, 3~7), the effect of attenuation of in~
duction in the clearance and the transverse edge effect were each studied
separately, Their purpose was to obtain two correction coefficients to be
applied to the simple technical formula for computing pressure, Upon a
closer analysis, both effects flowed together, since no separation was appar-—
ent in the phenomena. At the same time, the longitudinal edge effect,
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produced by the finite length of the pump channel, previously occupied a
separate position, and was studied independently of the two preceeding
phenomena. At the present time, we must assume that this division is reason-
able. If a purely sinusoidal (monochromatic) traveling field is produced by
the inductors, then the finite dimensions of the pump channel, with respect
to height and width, or of the inductor (with respect to width) are not
caused by dispersion of the field wave. The amplitude and phase of induction
change from point to point, but the form of the wave remains undistorted,

and higher harmonics are not produced. At the same time, the periodic struc-
ture of the channel or of the inductor in the direction in which the traveling
wave moves (with respect to length) inevitably produces the appearance of
higher harmonics and a non-uniform non-periodic structure (inductor having a
beginning or an end, or both) produces the continuous spectrum of the travel-
ing waves. Due to this fact, mathematical procedure designed for studying
the non-uniformity over the pump length differs significantly from the 167
procedure for studying the effect produced by attenuation of the field in

the clearance and the transverse edge effect. It would appear that it is
advantageous first to clarify the undiscovered patterns of both groups of
phenomena separately. Therefore, from this point on we shall assume that the
inductors and the pump channel are infinitely long.

P4
v e
E J"Mf//,,; sl
- 1 AEA A
P P W
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Figure 2

When examining different solutions of the problem of the transverse
edge effect, we shal. assume that we are dealing with a system of two in-
ductors, the distance between which equals 28. These inductors carry on
their surfaces (which face each other) an undistorted, traveling sinusoidal
wave of the surface current (linear current loading). We shall direct the
axes of the cooridinates as is shown in Figure 2. We shall let the x-axis
coincide with the direction in which the traveling wave moves (along
the pump), and the y-axis coincides with the direction of the surface current
and of the real primary currents in the inductor windings (along the pump
width). The z-axis is perpendicular to the surfaces of both inductors (along
the channel width). We shall assume that the magnetic permeability of the
inductors is infinite (¢ = »). In the clearance, u = Mo (both in the channel

with the molten metal, and outside of it). The width of the inductors is
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2¢c (or dinfinity), and the channel width is 2a. We shall place the origin
of the coordinates in the middle of the clearance between the inductors, and
also in the middle of the inductor channels, Let the linear current loading
of the inductors be

A,=4A,cos (ot—ax) =Re A, ettot-an, (3)

. T . s
Here w is the angular frequency, and a = g where v is the pole division,

All of the quantities are described in a system of SI units. If we /68
stipulate the c¢condition that the wave phase does not change

of—ax=const,

we obtain the wave propagation velocity
Un=GF =% (4)

It is understood that the directions Ay coincide for both inductors for one

and the same x. The following boundary conditions hold on the inductor sur-
faces (in the case of z = + §) (no matter whether induction currents develop
in the system or not, and independently of the degree to which the intra-
inductor (working) clearance is filled by the current-conducting medium) ;

for z2=§ Hx=—Ao,
(5)

for 2=—20 Hx=Ao-

We shall try to find the solution in a complex form, assuming the
presence of a phase factor el(pt ~ok) everywhere. The amplitude of this
phase factor equals unity (i is the imaginary unit). Let us examine the com~
plex amplitudes H, B, j and E, which we shall designate by a point above the
appropriate letter. Then the instantaneous value of the physical quantity
will equal the real part of the complex quantity

B =Re B ei(mt—ax), (6)
Its amplitude will equal the modulus of the complex amplitude:
Bh:lék' (k=x,y,z), (7
and the phase shift will equal the argument of the complex amplitude:
(p(Bh) =arg Bh- (8)

We shall employ the phase of the surface current of the inductors as the
ieference, zero phase -- i.e., we shall assume that the complex amplitude
0 in (3) is in fact a real quantity, As long as we perform the linear oper-

ations with the components of the fields and currents, there is no necessity
of dividing the real parts from the imaginary parts in the complex amplitudes,
It is another matter if it is necessary to perform non-linear operations both
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in formulas (1) and (2). We must then keep the fact in mind that it is /69
only possible to multiply the real physical quantities -- i.e., the real
parts of type (6) complex quantities.If we are only interested in the magni-

tude of the product averaged over time (period), it may be computed more
simply if no distinction is drawn between the real parts of the complex quan-

1
2

tities:

T=

Re [jB*] (9)

[see (Ref. 2, page 243)], where the asterisk (%) designates the complex con-
jugate.

2. Infinitely Wide Model

Before examining works on the transverse edge effect, let us write the
well known solutions for infinitely wide systems.

1., The field in the clearance between two infinitely wide and infinisr
tly long inductors, filled by a non-conducting medium, is

.= Hyoshaz _Hyshaz

shad ichad °’
¥ =ingCh_(E__HzoCh(lZ i0
H, shad =~ chad ' (10

. _2- ._..EQ_Q_’.
Ey—aBl—' a HZv
H,=E,=E,=0.

According to (5) we have

H =—A H H- = inO .

= > M7 tas (11)

2. The field in the clearance which is uniformly filled with a medium
having the conductivity o is

Hw shpz_ B I-i,o sh Bz

Ha=— pd iachps ’

g =iaﬁmch Bz =ﬁzoch pz
: ﬁShﬁb Chﬁb ! (12

. o - ® - . .
Ev=;Bz=p’%H2, ]y=oE”.

Hy=je=j,=0.

Here we have
B?=a?+ipeow; (13)
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H -3 = — ] = iSl__H_\o
x0 AO, HO HZO ﬁth Bé. (14)
In formulas (12) —- (14) (the same pertains to the following formulas)

we may divide the real and imaginary part, before commencing the numerical

computation which, however, leads tocumbersome expressions. On the other hand,
we may perform the entire computation from beginning to end with complex num-
bers, as is sometimes done in the theory of circuits. It is our opinion that

the second method is preferable.

Let us study the limiting case ¢ <71, or o << w. Then th aé + 0,
o

. o —_
and according to (11), HZO >>HXO.But ﬁzO = EBB ﬁyO’ and EyO play the role of
counter—-electromotive force per unit of inductor width. There is no reason to

assume that it strives to infin%ty, just like the applied voltage. For a

sufficiently narrow clearance, H - 0 and X - 0, and f =_9o £ does not
X y z Hol 'y

strive to infinity. In addition, we have

OH, o Hshaz JEy

9z ches O oz O
but

al:lx_al'izochaz @

dz  ichad i ® (15)

and not to zero. Thus, the longitudinal field component strives to zero for

a sufficiently small clearance. This does not occur for its derivative with
respect to z, which strives tgQ the finite limit (15). 1In its turn, the deriv-
ative (with respect to z) of Hz strives to zero; the normal field component

becomes independent of z. 1In order that ﬁx + 0 may be fulfilled in the case

of a clearance filled by a conductive medium, we must set 65'<<ﬂ, which means

06 << 7 and owd << 7 at the same time. The latter is fulfilled in all in-

o
duction pumps employed in practice (if uodw >>az, such a pump is not feasible
due to an exaggerated skin-effect), If we retain the linear current loading

of the inductors (more correctly, the ratio of the surface current to the /71

clearance thickness lim AQ , since the current itself strives to zero), we

§-0 s
then obtain the following when there is no conductor in the clearance

. O0H, . H 4,
i XL e il - P H
R PR LU e lim =% (16)

and we obtain the following when a conductor is present

. O0H, B.. H . A
1 X lim =X~ — |lim 2o
2o 0z Pam &~ um,
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i.e., we obtain one and the same result in both cases.

Formulas (10) - (14) make it possible to determine the averaged force per
unit of surface of solid plate cross-section between the inductors, which we
shall designate as the pressure of the induction pump:

a 3
L_ 1 1 .
P=gReg, fdy-z—a de(Jsz""‘)- (17)
-— _a
We would like to add a few words to (17). We obtain p from (1) by multiplying
fX by the pump length L and averaging over time, disregarding the longitidumnal

edge effects. For whatever reason, the product jzﬁy* always equals zero. Also
Y v
fy = fz = 0. We employ i’z in (17) to designate the unperturbed field (the

field in a hollow clearance), according to the condition mentioned above which
simplifies the computation. If there is no dependence on y, we then have
1 a
5a S dy = 1. The same holds true for z.
-a

The pressure is calculated very simply for an infinitely thin clearance
between infinitely wide inductors if the medium filling the clearance has such
a low conductivity ¢ that the field of the induced currents is much weaker
than the primary field (uo ow<<02). We may then employ formulas (10), in which

§ - 0, and jy = cﬁy (although it is small, ¢ is entirely different from zero).

In this case (17) yields

_OmlB'ZoPL 18
Po o . (18)
3. The Theory Advanced by A. I. Vol'dek [72

Let us now turn immediately to the problem of the tramsverse edge effect.
In chronological terms, the first analytical study deals with the transverse
edge effect "in pure form" —- i.e., when there is no attenuation of the field
in the clearance -- which is achieved in the limit by the thin clearance be-
tween the inductors. A. I. Vol'dek conducted this study (Ref. 3). 1In view of
the importance of this solution, we shall present it in its entirety below, to-
gether with certain comments. A similar problem was investigated in (Ref. 4)
for rotational machines.

A. T. Vol'dek divided the field in the clearance between the inductors in-
to a primary and secondary field. The primary field is the field in the clear-
ance filled by a non-conductive medium. (We shall designate it by H' and E').
In view of the fact that j' = 0, we must have rot H' = 0. The secondary field
is the field of the induced currents (we shall designate it by H" and E").

The total field equals the sum H = H' + H", E, respectively. The Maxwell equa-
tions
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9B
ot’
rot H=j

rot E= (19)
(20)
must be fulfilled for the total field. In view of rot H' = 0, we obtain the
following for the secondary field

"__ aB"
rot E” = 36" (21)

rot H” =j=o(E’+E"). (22)

The reason for this division lies in the fact that E' is assumed to be a known
function. In coodrdinate notation, (21) and (22) yield

-7 AT . g e ) N .
T~ = —iob,, T =00 e (B +E),

dy 0z

0E," . . ; e, OH[! s, g
== pinf = —ioB,", “Sx tiaf =o (£, +E,"),
. Y aé Y s " T Ff 17 aHx”

iaE ! + 0; =iwB)', —iaH, — Jy =/,

We must simplify the system (21) - (22), based on the physical conditiomns
in an extremely thin plate between the inductors. It is apparent that we must
have jz = (0 in this plate —— i.e., the current lines lie on one plane. We must

also assume that ﬁz = 0, since the plate has the same conductivity ¢ along the
z-axis, For infinitely wide inductors ﬁ'x = ﬁ'z = 0. This effect may be /73

expected for an extremely thin clearance between inductors of finite thickness,
so long as regjons are examined which are not too close to the inductor edges.

We then have Z)E':Z = 0 and E"z = 0. The occurrence of E; is caused by

. dy

thﬁifﬁnite, wide plate. Since rot A l_A, then -- according to (22) -- H" l_j,
whic

/may be satisfied in the case of H" = ezH"z, although this is not the only pos-

sibility. However, preference should be given to this, based on the following
considerations: if we retain the surface current A.y when introducing a con-

ductive plate, Ehen for ﬁ"x we obtain zero boundary conditions [see (5)]. Thus,
T

we also have OH x = (0 [see (16)]. Even when Ay changes, we may write
a2
B{I“
5 S = 0, since volume currents have no influence on the boundary con-
y 7z = i6
ditions, and BAX = 0 always holds. Therefore, it is natural to assume that

ay

®
H; = 0. We also have zero boundary conditions for ﬁ"y, since Ax = 0. We must
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thus assume that I:I"y = 0. We may express this most clearly in the following

way. The lines of the induced current field are closed between the inductors
along the shortest path -~ i.e., perpendicular to the plane of the clearance.
The zero boundary conditions for H"X and H" designate the perpendicular nature

of the lines to the inductors when they enter them. However, we than have

aEux aE'”_y_ . B al_'l”
55 =0z =0 we have dzz =0,

and equations (21) (22) yield the system which is used as the initial system of
A. I, Vol'dek:

9E",

iaE +—5y——lp.0mH ;
0,:1”2__ e . (23)
3y =gE";

S T R T o
iaH'" ,=qoE y+cEy.

=X

Excluding ﬁ"x and ﬁ"z and employing o y = 0, we obtain the following from (23)

oy
025”
+1PocmE (24)
where B is defined according to (13). (24) has the solution 74
E"_,,=A,chpy-}-Aashﬁy—l—ug—:gE:'y,

and then the current is

fy=o Byt B = (Archpy+Asshpy+ 5 ).

The natural boundary conditions are jy = 0 in the case of y = + a [A.I. Vol'dek

stipulates ISI"Z = 0 in the case of y = + a which is one and the same for the

system (23), see (23) —- third], from which it follows that A2 = 0, since j
281
must be an even function of y and Al =-2 g Y . Correspondingly, we have
B2chRa
. __a2 _ ch ﬁy)
Iy=g° oF! (1 ch pa
o _acEl, ( ch By) (25)
= ip? - ch Ba
""‘_"_E!.M

I«==—"5""chpa’
We feel it is necessary to add certain remarks to the solution (25). As
has already been indicated, we may assume that E' = E'z = ﬁ'y 0 for the
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regions (which are central with respect to the width) of the clearance between
the inductors. In this case, solution (25) must be explained by the assumption
that the conductive plate is narrower than the inductors. Nevertheless, .A. I.
Vol'dek extends the solution (25) both to the case a = c¢ (plate having the same
width as the inductors) and to the case a>c (plate wider than the inductors).
This is based on the fact that H' decreases sharply at the outermost edge of

the inductor, and 2¢ barely changes over the entire area, so that the ﬁ'z, which
is average with respect to the inductor width, differs little from maximum ﬁ'z
[ ]

This latter fact is indisputable, but we would like to note that BH'Z >+

Rl 245190Y
close to the inductor edges, and consequently oH vy >+ « and H X > +io .
' 3z dydz
We also have °F y QE' -
5y +> + «, from which we have ixﬁ'x - + + o, Unfortunately,

9z

no conclusions may be drawn regarding the quantity Bﬁ'y » 1f we assume that

o', dy

is given. No conclusions may be drawn with respect to the quantity /75

dy
' either. In order to do this, we must examine the solution in the entire

region of the field propagation.

After these brief comments, let us turn to the solution (25). According
to (9), we have

~

1 Coe
Femg Re L), (8,4 8,77,
However, it may be seen from (25) that jy and ﬁ”z differ by the factor %-——

i.e., they are shifted with respect to phase by 90°. Consequently, jyﬁ"z* can-
not provide the resulting force. According to (17), the pressure is

_ 00 B, L h
falL .__J[R ﬁ’( c ﬁy)

ch Ba (26)

- [L th
- 2(10 R P(l_ ﬁaﬂa).

A. I, Vol'dek recommends that the pressure obtained (26) be expressed by
the pressure Py (18) in the clearance filled by a medium with low conductivity,

and introduces the attenuation coefficient hoc

p=k[ocp0- (27)

This method has certain advantages for technical designs of pumps. The corres-
ponding attenuation coefficient (a# », o # 0, § = 0) is obtained as equal to
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_p. th
k'oc—Re—(l— _fﬁ> (28)

1t should be noted that kI oc is obtained for constant linear current

loading of the inductors (more accurately, for constant lim ¥ ,since the cur-
0 s

rent loading Ay and the clearance thickness 28 strive to zero). In other words,

an operation is performed of imserting a highly conductive plate of finite
width in the extremely narrow clearance (which was hollow before this) between
two infinitely wide inductors, maintaining the current in the inductor windings,
and not the supply voltage, which must thus be reduced since the total winding
resistance has decreased.

In the case of a » © —— i.e., when the entire, infinitely wide clear- /76
ance is filled quite well by a conductive medium (retaining lim Ay ) —-— we have
&0 E—
ot
bd-rhot=Re =i (29)

From our point of view, the following expression is assumed for hoc ,» which is

obtained by expansion of th Ba in elementary fractions:

B 202 1 . 1
o =="5" a2 ZK’? (a2+ .y_nz) I' p(fc?m’ ’ (30)
a=1 @ F 2P

where

un=Q’l§a‘_)“. (31)

Under the condition that p. cw << o2 (a# >, g 0, § >0), we obtain the fol-

lowing from (28) 0

thaa
m_.1 - -
koc _1 ad ? (32)

which may be readily determined according to 2 table of functions. The dif-
ference kOCIII—kOCI may be written in the form of a rapidly comnverging series:

[+2]
Rk, 1_ 2 0%po’0’w? 2 1 . I -
° a? 4 %2 (@2 +%,2)3 14 pololw (33)
n=1 (G2 +-x_u2)‘2

In the case when a conductive plate thickness does not occupy
the entire clearance 2§, but only part of it, 2A, so that § > A, A, T. Vol'dek
adheres to the previous hypothesis = 0. In this case, the magnetic resist-

ance to the flux produced by the 1nduced currents increases by a factor of §/A,
which is equivalent to a decrease in the magnetic permeability (or conductivity)
of the medium by as much as (UO > UOA) .

8
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It is a very simple process to pass from a plate at rest to a moving plate:
it is sufficient to multiply the cyclic frequency of the field w by the slipping
s (w > ws, where s = 1 - vV 3 v —- velocity of the plate; vf —— velocity of the

Ve

field) [see (4)].

As was already pointed out, kocI may be derived for a constant linear cur-

rent loading of the inductors. If we have a plate with high conductivity or if
we are operating at a high frequency, then How becomes larger, or even /77

much larger than, o?. In these cases, kOCI has very small numerical values.

According to the terminology employed, we thus have a strong armature reaction
(which is expressed as a drop in the total winding resistance). If it is not
balanced -~ i.e., if the previous linear current loading of the inductors is
maintained -- then the effeddiveness of the pump greatly decreases. However, in
practice (if only the temperature regime of the winding permits it) it is fre-
quently not the current which remains constant, but the supply voltage, and

the armature reaction is balanced. It is difficult to make a precise calcula-
tion of the effect of a constant supply voltage, due to the absence of a single
theory for a non-magnetic clearance and for the inductor itself: the real in-
ductor is replaced by a ferromagnetic body with a surface current loading for
which there is no active inner resistance, nor inductive inner resistance. If
we retain this idealization, we may only speak of counter-electromotive force
to the supply voltage, caused by the variable magnetic field in the clearance.
The constant supply voltage is then equivalent to a constant magnetic flux @T
for the pole division. In infinitely wide systems, a constant ¢; is equivalent

to a constant ﬁzO' In systems of finite width, there is no point in speaking
= ' 21 . LT .
of a constant ﬁzO ] 20 + B L0 Since B 20 depends on y [see (25)]. According

to this, we may introduce the attenuation coefficient for a constant supply
voltage (in the sense of a constant magnetic flux §T), i.e., with compensation

for the armature reaction. As has already been pointed out, the theory of A. L.
Vol'dek encompasses the tacit assumption that the inductors are wider than the
channel (to a sufficient extent). Let us clarify this assumption: c¢ > a. It

is assumed that the winding is of a diametrical step. We then have

Uo= iw('I)‘0=4a__0)_choo )

<

a
O=ivd,= 4—:—0 B +iw f e dx f By dy=
(4] -—a

=‘%"’ By [C + uoic;:; a( 1 tgaﬂa)];

and stipulating that ﬁ = ﬁO, we obtain .
B' re BzOo
20 1+poom.g_(1_ thBa)
ip? ¢ pa
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and A /78

b, V=Re- . Ba
iy 2(,_ th ﬁa) ) (34)
p bloow Ba
It may be readily seen that 1im kOCIV =1 - i.e., if the supply voltage

a=c¢>*

is maintained, the armature reaction in an infinitely wide plate is completely
balanced.

4. Other Theories with Plane-Parallel Field in the Clearance
of the Machine

L. V. Nitsetskiy (Ref. 5) has formulated a principle for drawing up a model
of certain vortex fields in an electrolytic bath and on electroconductive paper,
In particular, this principle may be applied to formulate a model of the trans-
verse edge effect in an extremely thin plate. It has been verified by the
author by comparison with the results derived from performing the calculation
according to formula (32). The agreement was satisfactory.

L. Ya. Ulmanis (Ref. 6) employed an analytical method to obtain the fol-
lowing attenuation coefficient for an extremely thin finite width of the plate

[BY] . 2® th Ba
koc"=—;4—ReF(l— e ) (35)
([Ref. 6], formula (1); the previous notation is employed). kocv is determined

as the ratio of the pressure in a plate of finite thickness to the pressure in
an infinitely wide plate, with allowance for the armature reaction:

p=Fk,"p",

where p'_ =k LI is the pressure in an infinitely wide, highly conductive
P g c P, p ’

o
plate, which is chosen as the initial pressure, instead of Pq (18), As the

plate narrows from an infinite width to the width 2a, a constant current load-
ing of the inductors (lim Ay) is maintained. 1L, Ya. Ulmanis has checked (28),
&0 —
$

(32) and (35) experimentally, and has provided the following experimental form-

ula
Vi 1
koc = ““_‘“‘E—-z-
1+ 1.3(3) (36)

Nothing more similar may be obtained, assuming ¢ = 0 in the expansion of /79
(30) and taking the first term of the series

1
. n _
8 a
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In an article by A. I. Vol'dek and Kh. A. Yanes (Ref. 7), the theory which
was discussed for an extremely thin plate between inductors was generalized to
the case of a plate with lateral short-circuiting bus-bars (Figure 3). Zone I
is the plate which simulates the channel of a pump with molten metal (it is im-
mobile here!), and the conductivity of the zone is ¢. Zone II is the short-
circuiting bus-bars with the conductivity o,. The condition § > A is taken in-
to account by the introduction of equivalent conductivity of the zone ¢' = o £ ,

J

which is similar for Og- It is assumed that the primary magnetic field is fully

concentrated in the clearance: in the case of |y|<c ﬁ'z = const, and in the case

of

>c E'z 0 (just like ﬁ'y). Two special cases were examined in this study.

y

1. a = c (short-circuiting bus-bars outside of the inductors). Equation
(23) holds for zone I. E'y = 0 in zone II, and the field of the induced cur-

rents is also disregarded, in view of the fact that magnetic lines pass along a
non-magnetic medium. Therefore, we may formally substitute Hg = 0 in (23).

Ld
The boundary conditions are: in the case of y =+ t H"z = 0, and in the case

- . = = 15 211
of y=*ta Jy I Jy I1; E x'I =B X‘II. In addition, it is assumed /80
that Hz!I is an even function of y. The following result is obtained:
Hni _ _1“°Ey'[ _ ao ch By )
¢ 0 g2 agchBc+osftha(f—c)shpe]’
jyll=iaHz”|I; (37)
k ""=Rea—2{l-— agshpc __}
oc ? Bclaogch Be+ Boeth a(f—c) shBc))”

Substituting gy =0 from (37), we may obtain the formulas for a channel which

is wider than the inductors, but without short-circuiting bus-bars.
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2. t = c (short-circuiting bus-bars between the inductors). In this case,
we have equations (23) for both regions; the boundary conditions are the same as
before. The result is -

. {axcE,’
Hz”ll=_ Bzy {1—

_ [(oP%*—02p) chPy(c—a) +02p% ch py }

paloap shpa(c—a) shpa-+oPach pa(c—a) chpaj)’

jy'l=t¢Hz”lls

(38)

2
k,V=Re ;Lz {1 _

_ sh Ba [(op?—0282)ch B2 (c—a) +c2p?] }
paBq [0’25 sh ﬁz(c—a) sh pa+ofs ch B2 (c—a) ch Ba] :

Here 622 =02 + iuoozw. Cases are possible in which kOCVIII>l for small wvalues

of ¢ and © and also a.

2 3
VII VIII . .
koc and koc are introduced under the assumption that the linear
current loading of the inductors is constant when conductive plates are intro-

duced into the clearance of the system.

5. Transverse Edge Effect in a Clearance o©of Finite Thickness

The following stage in an investigation of the transverse edge effect in
induction pumps is related to the transition from an extremely thin plate be-
tween the inductors to a plate of finite thickness, It is discussed in the
publications of A. Ya. Vilnitis (Ref. 8), T. A. Veske (Ref. 9), and N. M.
Okhremenko (Ref. 10, 11). 1In veiw of the fact that identical solutions are
obtained in the studies (Ref. 8, 9), in spite of certain variations in the formu-
lations of the problems, it is advantageous to analyze them concurrently,

The following problem is postulated in the study (Ref. 8). There are /81
two infinitely wide and long inductors with p = «, which carry a linear current
loading in the form of a sinusoidal traveling wave of the surface current Ay

(Figure 4). A conductive body having rectangular cross-section and the thick-
ness 28 (which equals the distance between the inductors) and the width 2a is
placed in the intra-inductor space. In the remaining intra-inductor space

06 = 0. It is assumed that the body is immobile, but —- as was already pointed
out —-- it is sufficient to multiply the cyclical frequency of the field w by
the slipping s for the transition to the mobile body. When the problem is
solved, the boundary conditions jy = 0 in the case of y = + a and jz =0 in

the case of z = + § become apparent, in addition to the boundary condition (5).
It is also necessary that the exciting action of the body may be reduced to
zero at an infinite distance from this body, which is placed between the in-
ductors -- i.e., in the case of y » + » , the field between the inductors may
be expressed according to (10). Finally, it is necessary that the magnetic
field be constant in the case of y = + a.
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The solution of the problem which is given in (Ref. 8) follows very clearly
from these conditions. Two qualitative consequences are clearly apparent in
this problem, which were mnot apparent from the very beginning:

(1) There is no transverse component of the magnetic field By over the

entire clearance, both outside of the conductive body, and inside of it;

(2) The field outside of the conductive body is an unperturbed field not
only in the case of y > + «, but also for any |y|> a.

By analogy with the formulation of the problem given by A. I. Vol'dek for
an extremely thin plate, the author (Ref. 9) first assumed that the plate was
thinner than the clearance between the inductors. However, when written out
the solution everywhere becomes § = A —— i.e., the solution may be written for
a plate occupying the entire width of the clearance. Secondly, the author /82
did not define the problem of the inductor width more accurately, and only
assumed that the primary field is described by expressions (10). This is
equivalent to the assumption of infinitely wide inductors. Thirdly, it was
postulated that the secondary field (the field of the induced currents) does
not pass beyond the side boundaries of the conductive plate . It is not clearly
apparent that this is an initial condition, but this is actually the case.

If the solutions given in (Ref. 8, 9) are reduced to one and the same
notations, the fact that they are completely identical becomes readily apparent
—— i.e., expressions (Ref. 8) (42) are identical to (Ref. 9) (4), and expres-
sions (Ref. 8) (41) are identical to (Ref. 9) (5) (with allowance for the fact
that the total field is given in [Ref., 8], and that the primary field (Ref. 9)
(3) must be added to (Ref. 9) (&), (5). This fact apparently indicates that the
problem may be solved without errors under the given premises, and that with
these solutions the next stage in terms of complexity is, in a certain sense,
exhausted after the solution for the extremely thin plate, given by A. I. Vol'-
dek. We cannot substantiate the fact that all of the qualitative patterns hid-
den in the above-mentioned solutions have been clarified. Their clarification
is of essential importance for orientation when proceeding to the next stage of
the problem in terms of complexity.

The expressions for the -fields and the currents are given in six different
representatlons in (Ref. 8) and (Ref. 9). We shall give the expressions for
Bz and Jy (i.e., for the components which are of interest when computing the
pressure developed by the pump) in a form which is the most advantageous for
the computations:

B Shps  «dp? ch Ba

[e.2]
— m-—1 s
+2poo(oa E (—=1)""!chymy cos ka}, (39)

[) Yy 2m ch yma
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(40)
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and B is given by the expression (13). The series in (39) and (40), which can-
not be summed up in tabulated functions, converge quite rapidly, pri- /83
marily due to the factor ¢hymy , since lyT'<a. In the case of y = + a, the

ChYma
series are summed up as follows:
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Tt may be readily seen that (39) and (40) are valid both over the region, and
at the boundaries of the conductive body.

It is interesting to note that the first terms in (39) and (40) coincide
with the formulas (2) for an infinitely wide channel, and the second terms may
be written as follows

- ocm.Ch5y~hmB-—llmB,
on adp? chfa z_0 30 °
az£oe a—oo

o0 a5£0
fow chpy_; — lim
—Bxo 562 Ch pa Z‘Lno]y 2l ],V’

a00  a—Co

Thus, (39) and (40) may be written as the superposition of the special solutions
(which are previously known) and of the special solution in the form of a series,
which cannot be reduced to tabulated functions and is not amenable to
separation of variables:
B,=limB, +1im B, - 11mB +Fs (y, 2),
340 30
a-—-co a0 a——»oo (44)
o0 040 c#0
jy=limj, + lim jy, —limj, + F; (y, 2).
Jv 220 Iy a_.011.! sy i (4,2)

a—oo az£co a—oo

(44) is not the only possibility for separating the simpler special solutions
from the general solution. Other examples are presented in (Ref. 8, 9). 1In
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this connection, there is a good possibility of employing simpler special solu-
tions of a different type, instead of the total solution, in the appropriate
cases. However, for this purpose the magnitude of the discarded portion of the
total solution must be determined. A general theoretical analysis of this /84
problem has not yet been conducted. A calculation of the special case (a = 0.13
m, § = 0.015m, T = 0.45 m, liquid potassium at 500°C) on a digital computer

has shown that the terms Fb and Fj in (44) can be discarded in this case up to

y =+ 0.12 m (in terms of the modulus, they are no less than three orders smaller
than the sum of the first three terms) and only in the immediate vicinity of the
edge (y = + 0.13 m) do they become of the same order of magnitude as the remain-
ing terms.

According to (17) and (27), the corresponding attenuation coefficient
equals
ia2cthpd  thpa
X _in2 —
k oc——th ad Re{ 1o O'(JJBO . 63062

2a? th ym
a52 Y mY |’

(45)

It may be readily seen that, in the case of § -+ 0, the kOI of A. I. Vol'dek (28)

is thus obtained. When verifying this, we must take the fact into account that
th BS - BS
th ynd ; ad at
lim 5 —""-—=0 _te
350 02 V%m y2m and euocm)ﬁ"’ “34! Re

kOCIX is introduced into (45) in exactly the same way as A. I. Vol'dek intro-
duces his kocI (28): a conductive plate having a rectangular cross-section is

introduced into the empty clearance between two inductors. The linear current
loading of the inductors does not change. Since the clearance between the in-
ductors has finite thickness 28, when a change is made from an extremely narrow

clearance (p = Py kOCIX; pPo is computed for a clearance which is infinitely

narrow) to the clearance 26§, the induction ﬁ'zo remains constant just as before
(the inductors are infinitely wide, and B' 20 does not change over their width).

Just as previously, we may introduce the attenuation coefficient in the case of
a constant supply voltage (in the case of a constant magnetic flux ) ) This

yields
2
w=Re — % . (46)
N adpocnl’
where
Y=i(c—a) cth ao+‘-°‘§3cth B — ‘;06"5; th pa —
(47)
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(34) is thus obtained with the limiting transition 8§ - O.

0,1

10,0

0,0316
0315
0297
0239
0157
0084

0,0305
0305
0288
0232
0153
0082

0,0276
0276
0261
0211
0140
0075

1,0 4,0
0,6787 0,9120
6769 9096
6366 8554
4781 6410
2577 3403
1171 1501
0,5928 0,7483
5912 7464
5560 7019
4181 5269
2282 2843
1068 1311
0,2951 0,3045
2943 3037
2769 2857
2106 2174
1253 1311
0667 0721
0,0515 0,0417
0513 0416
0484 0393
0404 0339
0331 0306
0191 0181
0,0158 00114
0158 0114
0150 0109
0148 0119
0134 0118
0077 0069

Turning to (45), we should point out that kOCIX may bé also represented in

the following more symmetrical form:

where

mined by the expressions (41) and (42).

koc‘x=

a‘
(kocl)m = ReY—ngmlz ( I—-
4
(koc‘)O =Re W

(kocI)O is obtained by substituting m

oo +2 3 (k)

|
)=k.,c‘:

. Tym. 2
0 in (koc Jm; Yo

v'2 are deter-
m

(48)
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The values of kOCIX for several parameters are shown in Table 1. The val-

ues of kOc in the case of D = E_= 0 correspond to the attenuation coefficient of

A. I. Vol'dek kocI' As we mayTreadily see,
a? thﬁa)
e x|l — 22
R (1- g
provides a good approximation up to D = S =9.02 (the error does not exceed
T

0.25%). However, even in the case of D 0.10 only the first sign is wvalid.

The simplified dependence

th aa
B M _
o aa
is valid within very narrow limits (in the case of A = %’to 0.1, D -~ up to

0.02, and ¢ = Hoow __ up to 1.5). This is clearly inadequate for practical applic-

02

ations, since e, and particularily A, fall outside of these limits.

We may obtain much better results by a comparatively simple method --

multiplying k I by th2q8:
o 262
kX =£;5 Re ( th fa ]
B pa

In this case, the error does not exceed 1% up to D = 0.25 in the case of ¢ g 1.5
and A » 0.3, and in the case of D & 0.10 this holds for any A up to £ = 10.0.
Figures 5 and 6 present curves of ﬁz, jy and %x which were calculated on

a computer according to formulas (39) and (40). Figure 5 presents the distribu-
tion of these quantities with respect to y in the middle of the channel (in the
case of z = Q) for the special case mentioned above (4 = 0.13 m, § = 0.015 m,

T = 0.45 m. The entire clearance having a thicknegs of 0.03 m, is filled with
potassium at 500°C). Curve 1 gives the amplitude B - 2 - phase; 3 and 4 - the

same for jy; 5 ~ the mean force density (effective pressure). Figure 6 presents

the distribution of these quantities in the case when only part of the clearance
is filled with liquid potassium (a = 0.14 m, 28 = 0.024 m, 2A = 0.014 m). 1In
addition, transverse partltlons made of stainless steel lower the effective con-
ductivity of the body (o .. = 0.95 - 106 1/ohm - m). A re-calculation was /87

performed on the recommendation of A. I. Vol'dek:e e~§ .

It may be seen in Figure 5 that, in the case of a highly conductive medium,
the pressure XL between the inductors (e = 8.64) changes greatly over the
channel width. It is comparatively simple to combat the decrease in %x down to

zero along the channel edges, since this decrease occurs in a comparatively
narrow zone (0.01 m ). However, the strongly expressed transverse skin —-
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effect -- the decrease in the pressure by almost a factor of two in the wide
zone in the center of the channel -- requires special compensatory measures,

The studies of N. M. Okhremenko (Ref. 10, 11) postulate a more complex
problem, with the purpose of providing a better approximation of a real, plane
pump of finite width: two inductors with a sinusoidal surface current load-/88
ing, which produces a traveling wave; a non-conductive layer of thermal insul-
ation on the surfaces of both inductors; a more conductive, immobile layer (walls
of the pump channel) above, below, and in the middle —- a conductive layer /89
which moves like a solid body with a velocity of v = (1 - S)VE in the direction

of displacement of the traveling field wave (Figure 7). The average layer re—
sembles a molten metal in the channel of the pump.

If we check carefully the boundary conditions employed by the author,

we shall see that they all apply only on different planes which are perpendicular
to the z-axis (parallel to the inductor surfaces). On the flat sides (in the
case of y = + a), no boundary conditions hold. Thus, it would appear that the
solution obtained does not depend on the conditions beyond the flat sides of

the channel and the inductor. This is an illusion. Based on the general form

of the solutions of N. M. Okhremenko, we may readily establish these conditions
which hold on the lateral surfaces of the channel y = + a, and beyond this, and
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we may formulate the model for which there is a solution of this type.

We would now like to direct our attention to the fact that B oY y=+a= o,
since B 2;:1 (the notation provided by N. M. Okhremenko). Conseqﬁéntly,

in the case of y = + a we have ﬁx = 0, ﬁz = 0, jy = 0 in every region (see

sections 5-7, [Ref. 10]). These are the same boundary conditions which would
hold if we used surfaces of ferromagnetic media without current loading in the
case of y = + a. Thus, the first possible model which the solution of N. M.
Okhremenko describes is as follows. There is a rectangular cavity in a ferro-
magnetic inductor, in which a single-layered system is located. There is cur-
rent loading in the form of a traveling wave on the horizontal surfaces of the
cavity. There is no current loading on the vertical surfaces. A transverse
field component Hy must naturally arise in this model.

However, this is not the only possible model. Such a solution is also
obtained if the inductors, and also the channel, are infinitely wide, but the
current loading over the width of the inductor is distributed according to the

following series

(~1)v s 2v+lny
QV+1 T 2a

The sum of this series equals Ay in the case of -a<y<a, 3a<y<ba, 7a<y<9a, etc.,
and -A in the case of a<y<3a, ba<y<7a, etc. The current loading on the in-
ductor surfaces changes its sign over the width of the inductors with the period
2a. An infinite succession of inductors arranged side by side is obtained.

The opinion advanced by N.M. Okhremenko, to the effect that the sharp peaks
(observed during the experiment) of the component &  along the inductor edges
substantiate the validity of the expressions for ﬁz and ﬁy ([Ref. 10], page 23)

as well as the similarity between the model under consideration and a real /90
pump, is not convincincing.
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In the solution of N. M. Okhremenko, a vertical current component & =
is lacking. z

= 0) / For this reason, we may make the following statement: the fact that the

obvious boundary condition jz = 0 is not employed in the case of z = A/2 means

simply that it is assumed that jz = 0 over the entire cross-section, as was the
case from the very beginning. Otherwise, we would have to set jz in the form of

a series, which yields zeros in the sum in the case of z = A/2, but which may
yield a non-zero sum for other z. Only if it may be shown that the coefficients
of the series j equal zero, must we have J = (0. The presence of By (due to

ferromagnetic lateral surfaces) makes it p0351b1e to assume that 3 = 0. 1In
this case, there are no apparent contradictions.

Finally, attention must be called to the fact that the boundary conditions
(section 2 [Ref. 10])

are invalid. Let us try to determine what the boundary conditions must be for
the electric field on a plane boundary of two conductive regions which slide
over each other and which have complete electrical contact (when changing from
one region to another, the current does not encounter any resistance). Region
II is immobile (Figure 8); region III slides along it at a velocity of v = eV =

= eV, (1 -5s) = "'(l - 8). The boundary of the regions passes through the

plane z = b/2. Let the electric field in region II equal EII in the case

= b/2. The field in region III will be E*III = EIII + [vB], where EIIL is
the field measured in an immobile coordinate system (connected with region II).
E*IIT js the field in a system which moves together with region III (effective
field; jIII = oIIIE#III), This is the manner in which the Maxwell equations
and the data of N. M, Okhremenko are interpreted (section 1 [Ref. 10]).

Z
g n
i b Z// %0
y Z4 ,;7 Z

L \\i\\ N Q
5 N\

Figure 8 Figure 9

Unfortunately, B does not undergo a discontinuity on the boundary. /91
We thus have
E M=F

* —_
EfMu—Emi_y B
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EXM=EMW 9y B,

The first Maxwell equation is
OBl

7= —rot E";
oB _
—%t— = —rtot E'= — rot E*"' 4 fot [VB].

Let us draw the contour, as is shown in Figure 9, where h « 2, hg = I, and
let us multiply the left and right parts of the equations by a surface element
ds. Let us then integrate over every I. We apparently have

l:m/——ds =0,

Since B is everywhere finite;

{
lim [rot E ds=1lim ¢Edl= f (E" —E)q),
1]

h->0 h->0
z C

In addition, 11'_%1 f rot[vB]ds depends on the mutual orientation of v and ds,
h~>
p)

and equals zero in the case of v J_ ds. However, we do not even require this,
since we have the dependence of E#III on EIII and B for the special case. We
may then draw the conclusion that, independently of the orientation of v, we
have the following on the surface: EtII = EtIII or, in the given case, in the

case of v = exv:

E fl=F i =F. 1
EW=EN—v.B, =E 1—v.B,.

Changing to currents, we obtain
mooju m ju
I A B

ofil -c" ! TGl T gl x*=z (50)

instead of section 2 (Ref, 10)., The lack of agreement in the first of them/92
is apparent. With respect to the second, we have

. 1 s l aE . 1 ]
B,=—mrot,E" (laE ny % )=%Ey"+ JOEN

iv dy ’
st fu_ 2 n 1 dE A
E, E, (1 s)( E +7e X )=

1

=sE 4 i(=s) E"
SEM 4 P dy

And as a result
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B _ I i (1=s) | O
g G a dy ’
which coincides with the boundary conditions of N. M. Okhremenko when, and only
when,

OEM 9E

oy 3y =0.
This occurs only in infinitely wide channels.
We may draw the following conclusions from the above statements,

At the present time, a sufficiently comprehensive solution has been pro-
vided for the problem of the distribution of fields and currents in a rectangur-
lar plate between two infinitely wide and long inductors which occupies the
entire width of the clearance. The corresponding attenuation co-
efficients of the pump efficiency are obtained (correction factors to the ele-
mentary technical formula for computing the pressure Py = 0wL|BZOZ| ) The

20
formulas obtained make it possible to compute the desired quantities readily
on a computer. In every case, terms with series of complex hyperbolic functions
may be discarded (the sum of the series practically never exceeds the duplicate
first term of the series). Then all of the requisite quantities may be ex-
pressed in tabulated functions, which may be calculated by hand without any
special effort.

The results obtained find limited application in the construction of in-
duction pumps, due to the great idealization of a real pump (solid conductive
medium fills the entire clearance, inductors are wider than the medium and are
replaced by ferromagnetic half-spaces with sinusoidal surface current loading).
These results also find limited application due to the lack of rigorous /93
solutions which provide an estimate of the error involved in this idealization.

One of the problems of paramount importance for future research is the
development of a theory for a channel of finite width, whose thickness is less
than the clearance between the inductors. In these solutions, the absence of
perturbation of the primary field outside of the conductive plate produces a
certain effect. This effect must vanish as soon as the plate thickness be-
comes less than the clearance between the inductors, since the lines of the
field will tend to pass around a highly conductive medium. 1In the limiting
case € + » complete displacement of the field from the conductive plate must
occur. The ca2culations must be conducted on the basis of the assumption of
infinitely wide inductors. The physical meaning of the lack of latteral dis-
tortion of the force lines must thus become apparent in the cases under con-
sideration.

The lack of a single theory for an induction pump (pump channel + in-

ductor) reduces the accuracy with which we may calculate such quantities (which
are so important in practice) as the active and inductive resistance of the
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pump winding and its active and reactive power. It also reduces the accuracy
with which we may calculate the changes in these parameters which are caused by
changes in the secondary circuit of the pump. This problem is closely related
to the problem of errors entailed when a real, tri-phase winding of the in-
ductor is replaced by a system of an infinite number of phases (the higher harmonics
are disregarded on the assumption of a sinusoidal form of the current loading).

It is necessary to find a solution for inductors having a finite width,
and it is desirable to take into account the influence of frontal sections.
Narrow peaks of the transverse induction component have been observed experi-
mentally along the inductor edges. There are theories which either ignore this
phenomenon (Ref. 3, 7-9) or else they explain it incorrectly (Ref. 10, 11).

The presence of B_ may lead to the re-distribution of Ey and Ex’ which quickly

has an influence on the pump efficiency.

Finally, it is necessary to find an approximate hydrodynamic solution for
a liquid-metal channel which is divided into several parts by longitudnal par-
titions (this is a case which extremely important in practice). This makes it
possible to correctly select structural methods for combating an excessive
change in pressure along the channel width and to combat the danger of inverse
flows of the molten metal, which greatly reduce the pump efficiency.

The main emphasis must thus be placed on a clear representation of the
concepts to be used, without struggling with complex computational formulas.
The clear representation of the concepts is absolutely requisite for orienting
pump construction in practice (thus, we do not advise an approximate machine
solution of the existing differential equations for the given boundary con-
ditions), The computational formulas contain, as a maximum, rapidly-con~ /94
verging series of hyperbolic functions of a complex argument. These functions
are apparently fundamental solutions in an investigation of induction
processes in rectangular regions and may be readily calculated on computers,
When one investigates semi~infinite regions (inductor of finite width), it is
true that we may expect a solution in the form of Fourier integrals, which may
lead to certain difficulties in the numerical calculations,
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LONGITUDINAL EDGE EFFECT IN LINEAR INDUCTION MHD MACHINES /95

Ya. Ya. Valdmanis

1. Introduction

As is well known, the development of a theory for linear induction MHD

machines was initiated with research on the simplest idealized models, in which
it was assumed that the dimensions of the inductor (primary circuit) and the
molten metal (secondary circuit) were infinite in the longitudinal and trans-
verse directions. Refinements related to the finiteness of real MHD machines,
which were independent of each other, were introduced in the successive stage.
The group of phenomena related to the finiteness of the dimensions in the
longitudinal and transverse directions was designated as the longitudinal and
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transverse edge effect, respectively. These effects were studied repeatedly
both theoretically and experimentally. This article is devoted to an investi-
gation of the present state of research on one of these problems -- the long-
itudinal edge effect. We would like to point out that a brief summary of this
problem may be found in the work by A. I. Vol'dek (Ref. 1).

Before the development of linear MHD machines, the longitudinal edge effect
was studied in connection with the development of asynchronous engines with
arc and linear stators, but we shall investigate this problem from the view-
point of MHD machines with allowance for their specific properties (unlimited
secondary curcuit and a practically infinite magnetic permeability of the mag-
netic circuit). Assuming that the channel of molten metal is infinite, from
this point on we shall only relate the longitudinal effect to the finiteness of
the inductor, which is represented by a smooth magnetic circuit (in theoretical
computations) with linear current loading given on its surface, in the form of
a traveling wave.

The longitudinal effect of a finite inductor without a secondary circuit
is manifested in the presence of additional pulsating fields, apart from the
traveling field, in the working clearance. In real inductors of MHD machines,
these pulsating fields are propagated over the entire length of the inductor
with almost a constant amplitude. We should recall that, in a similar in-
ductor of infinite length in the longitudinal direction, the field in the /96
clearance has the form of an undistorted traveling wave. The formation of
pulsating fields in the clearance is an undesirable phenomenon (the symmetry of
the currents is distorted, the losses increase, etc.). Therefore, different
methods have been advanced for inhibiting this field. When there is a secondary
circuit, there is an unusual flow of the induced currents in the molten metal,
beyond the limits of the inductor active zone, and the field is carried along
in the direction of motion.

Let us first investigate the field of a finite inductor (longitudinal edge
effect in a primary circuit), and let us discuss changes in the field distrib-
ution when there is a secondary circuit (longitudinal edge effect in a secondary
circuit). Finally, we shall point out directions which may be pursued by further

research.

Let us first turn to a specific examination of the problem, and we would
like to say a few words regarding the general computational method which is
applied in almost every study devoted to the longitudinal edge effect.

Only the electrodynamic portion of the computation is investigated in
every report ~- i.e., the molten metal of the secondary circuit is replaced by
a solid metal moving at a constant velocity. All the results are obtained
from a solution of the Maxwell equations (in differential or integral forms)
with the corresponding boundary conditions.

2, Magnetic Field of a Finite Inductor

The field of a finite inductor was first studied most extensively in a
work by G, I, Shturman (Ref. 2), but the possibilities inherent in this study
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found practical utilization by A. I.Vol'dek and co-workers (Ref. 3-5, 17).

Let us discuss in greater detail the results derived in these studies. The
following problem was studied theoretically in (Ref. 2) (see Figure 1).

1X
Y R ——
L) . \
Figure 1

We have a magnetic circuit with the height h and magnetic permeability u.
The current loading is given in the form of -J. cos (wt - az) [in the study
(Ref. 2) JO = Al on the active portion of its ~“length 2pt. In order to /97

make allowance for the shunting currents at the ends of the magnetic circuit,
portions of the length Y are left unwound. The lower magnetic circuit, which
does not have winding, has the same height h, The air gap equals §.

Assuming that the magnetic induction in the clearance has only the com-
ponent BX (only Bz in the magnetic circuit) and that the magnetic current at

the ends of the magnetic circuit (in the case of z = + (Y + p1) equals zero,
we obtain the following for the induction in the clearance in the region of the

wound section:
B =By, sin (of—az) — (—1)? Bm [k ch pz sin wf—
~— k4 sh Bz cos of],

(1)

where

By—_ Bofo ., shp¥ BchpY (2)
T 8(1+pYa?) T shB(YHpr)’ T achp(Y+pr)

_ 2p, . _ T
B=1 piss °=% (3

As may be seen from an analysis of expression (1), the first term re-
presents the traveling field, and the last two terms represent, respectively,
the portion of the pulsating field which is symmetrical over the inductor
length (vch Bz) and non~symmetrical (vsh Bz), In the case of p which is odd
(even), the phase of the symmetrical field coincides (shifted by 180°) with the
phase of the traveling field in the middle of the inductor (z = 0), and the
phase of the non-symmetrical field is shifted up to 90°, as compared with the
symmetrical field. TIf the magnetic permeability of the magnetic circuit strives
to infinity [B » O corresponds to this (3)], the non-symmetrical portion of the
field disappears, and the symmetrical component is constant over the inductor
length. Consequently, the non-symmetrical component of the pulsating current
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is caused by the finiteness u of the magnetic circuit (saturation). Since the
case mentioned above is observed in linear MHD machines, let us write expression
(1) in the case of B > 0

B=B,[sin (of—az) — (—1)? k. sin of], )

Y
ke=yipc (5)

For an experimental verification of (4), let us calculate the distribution of
the effective induction over the inductor length

2t/
Berr 2::!3 di= ;Vl"(-—l)"2k;cosazf-'|;'kc2‘, (6)

from which we readily obtain the maximum value Beff = Bmax’ and the mini- 98
mum value B = B ., k and B
eff min, ¢ m
B B
Bmlx=ﬁ (l +kc); Bmin’_".y_?m (1 —kc), (7)
_Bmax'—Bmin. Bm Bmax+Bmin
kc—*2~- ;2= g (8)

¥2

Figure 2 presents the distribution of the field, which was measured experi-
mentally, in the inductor clearance of one of the pumps constructed at the
Institute of Physics of the Latvian SSR Academy of Sciences [similar curves are
also given in (Ref. 5, 18)]. The curve corresponding to (6) is shown by the
dotted line (this distribution is observed in the case of serrated pulsations).
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Figure 2

Thus, we may experimentally introduce the coefficient kC which represents

the ratio between the amplitudes of the pulsating and traveling components of
the field. However, according to (5) a theoretical introduction of kC is far

from settling this question. It is impossible to determine the quantity Y,
introduced in (5), theoretically. When we are dealing with real inductors
having unwound sections, we may take the length of this section as the provisiondl
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quantity Y. The error which is introduced by the currents which are closed at
the longitudinal ends of the inductor is thus retained. When there are abso-
Jutely no shunting sections at the ends of the inductor, the introduction of the
coefficient kC completely loses any physical meaning, in terms of the calcula- ..

tion indicated above. The study (Ref. 3) proposes that kc be expressed as

follows

1
be= 1 (9

where A4 1is the ratio between the magnetic conductivity of the shunting /99

sections of the magnetic circuit and the magnetic conductivity of the active

zone of the air gap. However, this happens very little in theoretical ratios
(the problem may be reduced to calculating currents which are closed at every
possible secondary route).

The pulsating component in MHD machines, which is non-symmetrical over the
inductor length, is only slightly expressed according to [Ref. 1-3], although
this problem not yet been studied sufficiently. The presence of this component
may be established experimentally by employing the measurement method developed
in (Ref. 21), or by studying the distribution of instantaneous values of the
field induction (Ref. 1).

The distribution of the field in a disconnected magnetic circuit was
studied by A. A. Lebedev (Ref. 6-9). However, as was already indicated by A. I.
Vol'dek (Ref. 1), the results which he obtained do not have practical value due
to the errors entailed. We shall discuss below the method which he proposed
for balancing the pulsating field.

As was already indicated in the introduction, the formation of supplemen-
tary pulsating fields of the edge effect is undesirable, and they must be
eliminated as much as possible. Employing the terminology given in (Ref. 3),
we shall call this process adjustment of the field, and we shall call the wind-
ings with a supplementary pulsating component adjusted windings. Different
methods were advanced in (Ref. 3) for balancing the pulsating fields. In the
case of a single layered winding, this is achieved by means of a special coil
with a current which reaches the core of the stator at the winding level, and
which is switched on in phase symmetrically with respect to the inductor core,
or with a similar short-circuit loop. In physical terms, this is based on the
fact that the field of the coil with the current reaching the core is constant
over the inductor length in the case of y = », We need only select the number
of loops of this coil in order that its pulsating field may equal, and be oppo-
site to, the pulsating component of the inductor edge effect. With respect to
the short-circuit loop, when there is sufficiently small resistance a current
automatically passes through it in such a way that the total induction current
through the surface (which it reaches) will equal zero.

For a m-phase single-layered winding, according to (Ref. 3), the number of
loops of the compensating coil is
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Wo Ry
p

Wy =

a3

where Wy is the number of winding loops; kwi is the winding coefficient; p is

the number of pairs of poles.

It is thus assumed that the same amount of current passes along the loops
of the compensating coil as along the loops of the inductor winding.

For two-layered windings, it is assumed that the half-empty grooves /100
at the inductor ends are filled by the corresponding coils, whose free ends are
closed around the edge of the inductor, or are located in special grooves at
the ends of the inductor. If the clearance is small, in the region of inverse
closure of the compensation windings it is proposed that the clearance be in-
creased and the winding distribution along the length of the section be de-
creased, in order that the influence of these sections upon the secondary cir-
cuit be minimal, The use of a short circuit loop is also possible.

With respect to the compensation method proposed by Blake (Ref. 10), and
reiterated by A. A. Lebedev (Ref. 6-9) -- which amounts to a smooth change in
the loading to zero at the inductor ends -~ it is our opinion that total de-
struction of the pulsating component may occur, It is true that the question
remains open as to how great the drop must be, There is certainly validity in
the opinion of A, I, Vol'dek (Ref. 1) that this leads to incomplete utilization
of the magnetic circuit, and that this method is barely justified in compara-
tively short inductors.

The studies (Ref. 1, 3) present arguments regarding the error entailed in
this method, and argue that the author (Ref. 10) is only interested in the
field in the magnetic circuit yoke. However, as was shown in (Ref, 1, 3), when
there is a purely traveling field in the clearance, an additional pulsation
current may exist in the yoke. Actually (see Figure 1) in the case of B »+ O
and Y + 0 we may obtain the following from the expression (4) for the magnetic
current in the yoke

2z
. B
(Dro= fB,,, sin (mt~az)dz=;@[cos (of—az) — (10)
—p

—(—1)?cos ol].

However, the error entailed in the method of Blake does not follow —— i.e.,
the fact that a pulsation field may exist in the clearance if it is a purely

traveling field in the yoke:
B ~aBro
clear oz ' (11)

We thus find that the field in the clearance will be a purely traveling field,
if it is a purely traveling field in the yoke.

An article by A. P. Rashchepkin (Ref. 15) recently appeared, in which he
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studied windings with linear current loading which was not uniform over the in-
ductor length (in other aspects, the problem was similar to that investigated
previously in [Ref. 2], see Figure 1). The loading is represented in the form
of a superposition of the windings with different pole divisions (t) and /101
the same values of the frequencies (w) and amplitudes of the linear current
loadings (JO). The author (Ref. 15) obtained expressions for the magnetic in-

duction in the clearance in the form of a series, and studied the possibility
of balancing the pulsating fields. The method advanced does not differ basical-
ly from the method proposed by A. I. Vol'dek which was just discussed.

The distribution of the field in the clearance of a finite inductor, as a
function of the inductor length, was studied in (Ref. 20). This article in-
vestigated the problem, which was similar to that solved by G. I. Shturman
(Ref. 2), if we set B and Y = 0 in the latter, and if it is assumed that p
(length of the inductor in pole divisions) is an arbitrary number. Somewhat,
unexpected results were obtained. 1In this model, the pulsating field was en-
tirely determined by the inductor length. The generalization of expression (4)
was also given for the field in the clearance in the region of the wound sec-
tions:

B=Bn[cos (of—az)—cos np cos wf], (12)

where p, as was already indicated, is half of the inductor length in units of
the pole division.

In order to suppress the pulsating component, it is proposed that induc~
tors be used whose active portion has an odd number of pole divisions. In this
case cos Tp _ 0 (p -- odd number) and the pulsating portion of the field dis-

2
appears in(12). In the case of even 2p, we obtain cos wp = (—1)P, which co-
incides with the results given in (Ref. 3-5, 17). The article (Ref. 20) pre-
sents the results derived from experimental studies, which substantiate the
validity of (12).

Similar ideas were advanced in (Ref., 10, 19) regarding the possibility of

a purely traveling field in the clearance of a finite inductor. However, a
sufficiently comprehensive theoretical basis was not provided for these ideas,

3. Field of a Finite Inductor with a Secondary Circuit

All of the preceeding results pertain to no-load operation of the machine.
However, the construction of a MHD machine must be optimal in the operational
regime. Consequently, it is of greatest interest to study the distribtuion of
the field in an inductor with a secondary circuit. If a comprehensive study of
this type were carried out, it would be possible to refine the efficiency with
which the field could be adjusted during no-load operation. However, as was
already indicated in (Ref. 1), this problem has been studied to the least ex-
tent, and there is no unified terminology for it. We shall deal with the study
performed by A. I. Vol'dek (Ref. 12) in greater detail later on, retaining the
terminology employed by him (Figure 3, previous notation). The difference from
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the problem investigated above consists of the fact that the magnetic circuit
is not limited in terms of height (h -+ «) and in the longitudinal direction/102
(y > ®). 1Its magnetic permeability if infinite (u + ®) and, in addition, the
clearance is filled by a conductor having the conductivity ¢ which moves like
a solid body at the constant velocity u = u . The study (Ref. 12) also takes

into account the presence of a clearance between the inductor and the metal,
like serration of the inductor, but this may be reduced to a change in the con-
ductivity of the body which fills the entire clearance. We shall not deal with
problem of whether this conductivity of the metal is real or effective, and
shall take into account additional phenomena.

X
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Figure 3

Assuming that the field is a  plane-parallel fjeld (i.e., it does not
depend on the x-coordinate), for H = Hx we obtain the following equation

0’H oH oH
rra (717+”7z—)=°- @3

The author (Ref. 12) writes the solution within the limits of the active
zone as the sum of two fields:

H=H+H, ’ (14)
where
Hy=Hjzei0t-a2) L 1, elot (15)
Thus H, is given and differs from zero only within the limits of the active

1
zone (|z]|<pt).

In our opinion, it would be simpler to give the linear loading in the form
of a traveling wave -~ i.,e., only the first term in (15), The pulsating com-
ponent of the no-load operation [second term in (15)] would have to be obtained

from H2 in (14), when o - 0. This problem is more general as compared with the

study by G. I. Shturman (Ref. 2), if Y > ®, u > ©, h + » in the latter, and the
results given in (Ref. 2) must be obtained as a special case of the problem
under consideration. Such a distinction would be valid if we wished to con-
sider the finiteness of the magnetic circuit or the height of the yoke. How-
ever, we would then have to define the pulsating fields beyond the limits of
the active zone; these fields exist beyond this zone, as was shown by G. I.
Shturman.

For the given case (i.e., B -+ 0 and Y » ), we obtain /103
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H:n=—(—'1)"H1a- (16)

Let us write the formulas derived in (Ref. 12), with allowance for the
statements presented above:

Hl =C4e(7‘«+5)2' (17)
Hu=Cse—ﬂ'-B)2, (18)
Hyy = Cie= -8z 4 Ce+B)2— Hype-iaz 4 Hpe=ioz, (19)
where

- l'eSHw_ 2. p] — L.

Hga s’ M=VB +ie=a+ib;
p= ___uogu i &=[o00; (20)

a=—d=; b=__3__; d=vﬁ2+VﬁT““§+e :
72 724
cn=[’—‘i—“iﬂ(—1)pﬂza+~—’“‘“(—1)v+*ﬂw] e= =B, (21)
22 2

Cz=[tg—;ﬂ (—=1)PHgp + _-__7»2—Lﬁ —U”“Hla] e-(-Bler, (22)
Ca= —2C,e™~B9 sh (h— p) pr: (23)
Cy=—2C,e*+Pr7 sh ()4 p) pr. (24)

The indices I - III designate the total fields in the corresponding regions
(see Figure 3).

Let us study in greater detail the structure of the field in the active
section (|Z|<pT). We shall only be interested in the additional terms in ex-
pression (19), i.e., the first and second terms. The last two terms occur in
infinite inductors, and we shall not discuss them.

Thus, with allowance for dependence on time, we may write the field of the

edge effect H2 edge in the following form

H2 cdge = Ce~ta-Bizgllot-b2) 4 C,ela+B)zgi(0t+b2), (25)

As may be seen, the fields of the edge effect are fields which move in
opposition from the ends of the inductor at a velocity of

2 __ Y
Yedge ":tb_ip.oa' (26

In (Ref. 12), the first field, which is propagated in a positive direction,/104
is called the direct field of the longitudinal effect, and the second field is
called the inverse field. As may be seen from (25), in the case of B # 0 (this
corresponds to u # 0), the fields of the edge effect are damped in a dissimilar
way: in the case of u>0 the direct field is damped more slowly. The field is
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carried along by a flux of molten metal, which has been observed experimentally
(Ref. 13).

Such a phenomenon has been observed by the author beyond the limits of the
active zone. A wave escapes from the right end, which is similar to the wave
of the direct edge effect, and a wave which is similar to the wave of the in-
verse edge effect escapes from the left end. In order to obtain a clearer pic-
ture of this, let us examine Figure 4 given in (Ref. 12), which presents a dia-
gram of the distribution and motion of the fields of the edge effect. The
arrows designate the direction in which the waves of the edge effect are prop-
agated; their velocity determines (26). Let us present two numerical examples
from (Ref. 12): (1) induction pump for aluminum at 735°C; (2) induction pump for
sodium at a temperature of 500°C. In both cases, it is assumed that f = 50 cps,
the pole division is 1 = 0.15 m, and the number of pairs of poles is 2p = 6.
The initial data for these examples are presented in Table 1.

TABLE 1
INITIAL DATA FOR THE EXAMPLES
Ty T T Ty T/ 7777 "Pump for | Pump for
Quantities Notation Dimensions Alumin Magnesium

Layer Thickness | 89 | = | 1w 775 T
Equivalent Clearance k66 mm 35 6.6
Specific Resistance l:0 10-8ohm.m 21.3 18.44
Parameter € 1/m2 528 1620

Table 2 presents the quantities for the pumps under consideration which
characterize the fields of the edge effect.

TABLE 2 /105

CHARACTERISTICS OF THE FIELDS OF THE EDGE EFFECT

Quantities|Dim~- Pump for AluminumJPmevfgfpﬁggigg__
ensions| sop | s-03 | s=005 | s=1 | s=03 | s=005

g i/n 0 885 | 12,0 0 27,2 36,8

a /s 16,2 17,4 18,3 28,4 35,7 41,6

b 1/m 16,2 15,2 14,4 28,4 22,7 19.5

(1) 4ep 2) mjcex 19.4 206 | 21,8 | 110 138 | 18,1

a— 1/n 16,2 8,55 6,3 28,4 8,5 4,8

a+p 1/m 16,2 26,2 30,3 28,4 62,9 784
Hyy 1 Hiy — 0,772 0,34 0,06 0,965 0,743 | 0,182

(1) - u ; (2) - m/sec

edge
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As may be seen from the table, the velocity of the edge effect fields in~
creases with a decrease in the slipping and conductivity. Damping of the fields
is characterized by _1 and _1 <(corresponding to the distance at which the

B+a a-f
inverse and direct fields are damped by a factor of e). Table 2 also presents
the ratio between the field of the secondary currents and the field of the pri-
mary currents.

It should be pointed out that this phenomenon is nothing else than diffu~
sion of the magnetic field from each end of the inductor in both directions.
Passing to the limit o - 0, u > 0 in expression (25) we obtain

Hy edge =—(=1)PH e, (27)
i.e., the field of the longitudinal edge effect of the primary circuit. This
result. is obtained because the field of the direct and inverse longitudinal
effect in a secondary circuit is not damped in the limit over the length of the
inductor, and its velocity strives to infinity ~ 1 in the case of ¢ + 0. 1In
Vo

regions I and IIT, the fields disappear, since C3 and C4 strive to zero when

u-~>0 and o »~ 0.

The longitudinal edge effect in a finite inductor with a secondary circuit
was also studied in (Ref. 14) (Figure 5), where —— in contrast to (Ref. 12) —-
it is assumed that there is winding on both sides of the channel, the magnetic
permeability of the magnetic circuit is p = const, the inductor length is
arbitrary, and in addition damping of the field in the clearance is taken into
account (surface effect).

The problem is solved by means of the vector potential A, which is found
from solving the equation /106

94 6A)=0 (28)

AA"'},I()O' (-87 + uaz

with the corresponding boundary conditions.

X The author (Ref. 14) makes a
Fourier transformation with respect to
Hiff??//ﬂOillb;“ﬁs%an, ez, the z variable —-- i.,e., the solution
LR L et z for A is written in the form
7777777 PIFIIIISEILE TS T ] .
Figure 5 Al‘—‘g;fAl(E. x) efzdg. (29)
—o0

In view of the symmetry with respect to x, the Fourier component in the
clearance may be written as

Ay (8 %) = Ao ch (VE?—Tip6 T Tofo) . G0

However, the assumption is also advanced that in an upper magnetic circuit the
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given component of the potential is
Ay (&, x) =Bge-tx, (31)

It may be readily seen that, by employing the Fourier component (31) we
obtain the following for the potential in region IV

1 [, .
Ay=ge [ Boe-ted, (32)
—

Since x > 0 in the upper magnetic circuit, this integral diverges, because the
integrand increases indefinitely in the case of £ > -=, and consequently
AIV (¢,x) does not have the form of (31).

Since the author (Ref. 14) employs the incorrect Fourier component to ob-
tain all further results, the analysis of this study could be discontinued.
The incorrectness of the results, in connection with the statements given above,
pertains to all formulas and arguments when p of the magnetic circuit equals
const. However, a large portion of the article(Ref. 14) is devoted to studying
the case when u of the magnetic circuit equals infinity. In this case, the
terms, which are obtained from the incorrect form of the potential in /107
region IV, vanish, and a correct result is obtained. The magnetic field
in the clearance may be expressed in the form of a series, whose first term
coincides with the results derived in (Ref. 12). The author (Ref. 14) has also
obtained analytical expressions with allowance for the first term of the series
for Joule heat losses for the effective power and consumed power. In additiom,
the results were analyzed qualitatively for specific values of the parameters
introduced, but we shall not present these expressions due to the fact that
they are cumbersome.

The author (Ref. 14) has also studied the problem of compensation for the
longitudinal effect -- i.e., the possibility of obtaining a field in the con-
ductive metal, in the form of a non-distorted traveling wave. 1In order to do
this, it is proposed that winding be employed in the forms of the superposition
of three windings with different 1 and different amplitudes of the current
loadings. However, the use of such complex windings requires an additional
theoretical basis or experimental verification.

The field of a finite inductor with a secondary circuit was studied in
the work (Ref. 11), but the results obtained (which was indicated in [Ref. 1])
have no practical importance.

The longitudinal effect of a finite inductor without a secondary circuit,
and with a secondary circuit, was only studied theoretically in a qualitative
manner. To obtain a quantitative theory for the longitudinal effect of a
finite conductor, we would have to find more precise methods for determining
kC in expression (4). With respect to the secondary circuit, it would be desir-

able to clarify the influence of a clearance between the inductor and the molten
metal layer upon the decrease in the fieldsof the edge effect in the secondary
circuit (25), since the results given in (Ref., 12, 14) were obtained upon the
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assumption that the entire clearance was filled with a molten metal.

It is desirable to provide experimental confirmation of employing inductors
with an odd number of pole divisions in the active region, when there is a
secondary circuit.

Concurrently with these studies, an analysis must be performed of the
longitudinal and transverse edge effects in MHD machines. This problem was
studied in (Ref. 16), but -- as was pointed out in (Ref. 1) -~ these studies are
far from complete. The author (Ref. 16) has provided a very approximate solu-
tion of the problem, and only relates the phenomena occurring in the molten
metal, within the limits of the inductor active section, with the longitudinal
effect.

It would be interesting to study the influence of inductor projections up-
on the longitudinal effect.

The directions to be followed by future research, which we discussed above,
are naturally only provisional, and are far from encompassing all possible paths
of research on the longitudinal edge effect in MHD machines,
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PONDEROMOTIVE FORCES ACTING UPON CONDUCTIVE BODIES IN THE
TRAVELING MAGNETIC FIELD OF A CYLINDRICAL INDUCTOR

Yu. K. Krumin'

1. Introduction

Up to the present time, the traveling magnetic field with axial symmetry
has been studied less frequently than fields of the flat type. However, it is
of great importance for the development of new designs for MHD machines. The
advantage of fields with axial symmetry lies in the fact that inductors for pro-
ducing such fields have no frontal sections, and there are no transverse edge
effects in the working medium. This leads to an increase in the efficiency of
the machine, as a whole.

However, cylindrical inductors in electromagnetic pumps and other MHD mach-
ines have been employed to a lesser extent than flat inductors. There are few
articles in the literature on this problem (Ref. 19, 22), The use of a travel~
ing magnetic field of cylindrical inductors is also well known for producing a
different type of electromagnetic conveyers of solid conductive objects (Ref. 6,
7). The reason for this may be found primarily in the fact that the distribu=
tion of the force density over the channel cross-section is different in a
cylindrical pump (with a solid channel, without an inner core) than it is in a
flat pump: it equals zero in the center of the channel. Due to this fact, a
different type of closed flows may occur, which obstruct the normal operation
of the pump. One opinion even holds that a cylindrical pump without a core can-
not operate successfully, in general. Only recently have studies appeared (Ref.
2, 17), in which it was shown that this opinion is incorrect, and that the con-
struction of cylindrical pumps without cores is fully possible.

A ferromagnetic core considerably improves the situation, and therefore it
is employed in all existing cylindrical pumps. However, it is only employed
under conditions in which the core still retains its ferromagnetic properties.

One of the main problems which is encountered when designing any device
utilizing ponderomotive forces, which influence the conductive media located in
the traveling magnetic field, is the development of methods for calculating
these forces, particularly their maximum values, as a function of other /110
characteristics of the device. This chapter will be devoted to these problems.

2. Cylindrical Inductor and its Electromagnetic Field

As is known, the cylindrical inductor of a traveling magnetic field re-
presents a system of coils located on a common axis, which are supplied by an
alternating current which is usually a tri-phase current. The field produced
by such an inductor is rather complex. Therefore, in theoretical designs sim-
plifications are usually introduced which assume that the conductive medium
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under consideration is located in the idealized field produced by an ideal in-
ductor, and not in the field of a real inductor. A cylindrical surface having
the radius R of infinite length, around whose circumference a surface current
flows, is placed under an ideal inductor. Its density changes sinusoidally
both in time and along the z-coordinate: A = Aoei(wt-az). In other words, this

current represents a traveling wave, whose phase propagation velocity equals
w/a. At such a velocity, the equal phase plane of the field excited by
this current is displaced along the z-coordinate.

The electromagnetic field in this inductor -- i.e., in the case of r K R —
has the following form if the inductor is filled with a uniform medium having
the specific conductivity ¢ and the magnetic permeability u:

H,ofn, fl(Bf)) ellot-az).

B L(pR) (1a)
a
H.=H, lo(pr) ot -az),
©75(BR) °
=-—£ﬂ"’.£{_09-é_(ﬁr_)_ of-az
Eo==% ey &

Here we have

p=Yu?+iopw, (2)

and HOO is the strength of the tangential (Hz) component of the magnetic field

on the inductor surface ~- i.e., in the case of r = R.

If there are no conductive and ferromagnetic media within the inductor,
the field has the following form

=lH 1(0.7') i(wf — az) /lll
oolo( R) e
H;=Hgy 7" ]o(ar) gitot-az), v
To(aR) '
E=_mmmthmﬂdwwa
o loy(aR) '

Figure 1l presents a picture of the magnetic field of an empty inductor for
two cases, when the ratio 2R/t equals 2 and 0.5.

The electromagnetic field of a real inductor may be computed by sum- /112
ming up the fields of all the loops along which the current passes. Such a
calculation was performed in (Ref. 16), in which an expression was found for the
radial (Hr) component of the magnetic field for an inductor of finite length.

It was also assumed that the inductor winding was infinitely narrow, and the in-
ductor itself represented a group of solenoids located on a common axis and
arranged close to each other.

Since the magnetic field of a solenoid of finite length is well known (Ref.
14), no particular difficulties are entailed in determining the total field of
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Figure 1
Form of the Magnetic Field in a Cylindrical Inductor:

a - For 2R/t = 2; b - For 2R/t = 0.5

the inductor. Employing dimensionless notation, we may represent the radial
component of the field of such an inductor in the following form

A= 2l Zl/_ {2 -#)xer -2 |-

- [(% -—k,)K(kz) ~ g Ee) ]} cos [mt+£‘-_‘)_’l]

Here E and K are the complete elliptic integrals of the first and second
type; '

(3)
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(4)
k is the number of solenoids forming the inductor;
- r - T - z
F'=-a5; e T=—;, 2= — (5)
R R R

The values of Hz and E¢ are not given in the work (Ref. 16).

Figure 2 presents a graphic illustration of the function (3) for the moment
of time t = 0 at a value of r = 0.5 for certain t.

The field of a real inductor differs from the field of an ideal inductor
(if we do not assume that it is distorted close to the ends) in the fact that
in a real inductor it is not a sinusoidal field along the direction in which it
is propagated —- z-axis. It may be expanded in series of spatial harmonics,
which all change at the same rate over a period of time, but which have differ--:
ent T, The larger the ratio of the pole step to the inductor radius, the larger
is the amplitude of these harmonics. This is clearly illustrated in Figure 2.
In the case of small T, the form of the curve is close to a sinusoid, but its
amplitude is small. The conclusion may thus be reached that a certain optimum
Toptim must exist, at which the operation of the electromagnetic device will be
the most efficient.

The distribution of the magnetic field (averaged over time) in the /113
real cylindrical inductors along the inductor length was studied in (Ref. 3).
The influence of individual coils and projections of the inductor magnetic
circuit upon the field may be clearly seen in the graphs.

In addition to studies which calculate the electromagnetic field in an in-
ductor filled with a unifrom substance, there are still many solutions of the
problem when a conductive medium having a certain configuration is placed in
the inductor. We shall investigate these solutions, together with the corre-
sponding solutions for the ponderomotive forces, since they represent two sides

of the same problem.

3. General Formulation of the Problem and Method of Solution

As has already been indicated, the problem of a cylinder having infinite
length, located in the field of an ideal inductor, has been subjected to the
most extensive theoretical treatment. Although this represents an idealization
of reality, the results obtained nevertheless present a correct concept of the
phenomenon -~ the nature of the dependence of force on frequency, conductivity,
pole division, etc. The contribution furnished by a consideration of the real
conditions amountsto a correction of the solution obtained. In addition, it may
be stated that -~ if we know the spatial harmonics of the field -- then, in view
of the superposition principle, we may obtain the complete solution by summing
up all of the special solutions which correspond to each harmonics. All of this
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speaks in favor of a detailed study of the idealized case, which may thus be
assumed to be fundamental for a study of real cases.

The solutions for ideal cases, which are presented in different stud- /114
ies, differ primarily in the amount and order in which the layers are arranged
(layers of coaxial cylinders), which are located in the inductor. For all of
these problems, we may present a general method which may be employed to derive
the solution, which is as follows.

Let us assume the most general case, when the device consists of n coaxial
cylinders, along which circular surface currents pass (we shall assume that they
have the same w and a). These currents alternate with m uniform layers, whose
specific conductivity and magnetic permeability equals ok and My (k =1, 2, ...,

m) (Figure 3). The radii of the surface dividing the media may be designated
by ¥, .
k

Let us solve the Maxwell equations in cylindrical coordinates. Since the
phenomenon does not depend on the angle ¢ in this case, all of the derivatives
with respect to ¢ in these equations must be set equal to zero. Due to this
fact, the system of equations is broken down into two independent systems (each
one comnsists of three equations with three unknowns). One of them contains Hr’

Hz and E¢, and the other contains Er Ez and H¢. It may be readily seen that

Er = Ez = H¢ = 0, and the solution of the first system has the following form
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Hoyp=~ ai:; [Cind  (Brr) + Con Ky (Brr) ] ellet-a2),

th=iﬁ£‘ [Cindo(Bar) — ConKo (Pur)] eftet-a2),
i

(6)
Eﬂ’h-—-[clkll (Bhr) 4+ Cor Ky (ﬁhf)] gllot—az)
where
pr=Vo’Fiomo (k=12 ..., m). -

Such a solution must be written for all m layers, substituting the corre-
sponding values of Gk and uk, with the exception of the extreme values ~—— of

the inner layer containing points with r = 0 and the outer layer containing
points with r = «», In order that the solutions may be finite and unique, we
must discard the functions K in the inner layer, and the functions T in
the outer layer.

The integration constants Clk and C2k are determined from the boundary/115

conditions, which hold on each dividing surface, and which have the following

form
o= pre1Hy, ni

Hap—H,, p11=Ap for r=r,. (8)
EQh=E‘p: k+1

It may be readily seen that the first and third conditions of (8) yield
identical equations, and we thus obtain a system of equations from 2k - 2 equa-
tions with 2k - 2 unknowns. With respect to the second condition of (8), if no
surface current flows along the dividing surface, then zero must be substituted
instead of Ak'

The solution obtained completely determines all of the electromagnetic
processes in the system under consideration. However, the complexity of the
computations increases greatly with an increase in the number of layers, and
therefore only problems with several layers have been investigated more or less
extensively at the present time.

Cylindrical pumps with the number of layers reaching 6 may be frequently
encountered in practice (Ref. 1). 1In this connection, E. K. Yankop (Ref. 20)
proposed a method for solving this system of equations in the case of a large
number of equatiomns.

4. Methods of Representing the Results

The direct purpose of the computation is to determine the ponderomotive
forces influencing the working layer in the inductor.

In this case, there are two force components which differ from zero -- the
radial component f, which contracts the cylinder, and the tangential component
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fz which operates in the direction of motion of the field, Their density

averaged over time may be computed according to the well known formulas:

fr=‘;‘ Re[joBx0*]= %:Re [EqoBz*]; (9)

f= __;' Re[jgpoBr*]l=— % Re[EgoB1*].

The total force may be found by integrating the force density over the
entire volume of the conductive substance, Thus, the radial forces are mutually
balanced, and therefore produce no effects if the cylinder under consideration
is solid. When they influence a liquid, different radial flows may arise.

The force component operating in the direction of motion of the field pro-
duces the useful effect of displacing the conductive body. Therefore, /116
when one speaks of the forces in the traveling magnetic field, it is usually
this component which one has in mind, unless otherwise stipulated,

We must now turn to the method of defining the boundary conditions. It
must be stated that (8) is not the only possible method for defining them, In-
stead of defining the current values in the inductor, we may define the strength
of the magnetic field on any dividing surface, This is the customary procedure,
especially when there is only one surface along which the surface currents pass.
Thus, the strength (Hz, Hr) is given, both on the surface where the currents

pass, and on the surface of the conductive cylinder which is located in the in-
ductor, In other words, one and the same problem may be represented in a com-
pletely different manner, and the expressions for the force will also be differ-
ent. When we are computing the force, we are only interested in the processes
in the conductive medium under consideration. Therefore, we shall assume that
it is more advantageous to divide the problem into two parts: to define the
strength of the magnetic field (one of its components) on the surface of the
conductive medium (if it is solid), with which the electromagnetic processes
within it will be clearly determined, and to calculate this strength by the
method indicated above as a function of the currents flowing in the inductor
windings? as well as other characteristics of the device, It is possible to
define the strength of the field on the surface of the medium, because the
distribution of the electromagnetic fields does not change as a function of the
surface on which we define the boundary conditions,

If the medium which we are considering is a hollow body, it will be in-
sufficient to define the magnetic field only in the form of a single boundary
condition on its durface, We must here define two conditions. This may be
done by defining the values of both field components from one side of the body,
or with respect to one component from the outer and inner side. However, such
a method is not employed in practice. By employing this method, for a specific
form of the body we shall only have one formula for the force; we shall have to
substitute a specific value of the magnetic field strength in each case in this
formula. This makes it possible to compile the general curves or tables for
the calculations, which may be employed in every case, and to analyze the phe-
nomenon, abstracting from the foreign influences introduced by other elements
of the device.
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Naturally, all of these statements only pertain to problems regarding in-
finitely long cylinders in an ideal inductor.

In order to decrease the number of variables, the computational results
may be represented in dimensionless form. Thus, the following dimension- /117
less numbers are introduced as the arguments:

eo=opna?;, a=aa, (10)

where a is a certain characteristic dimension. Customarily, if a solid cylinder
is being considered, its radius is taken as a. For an empty cylinder, it is
natural to use its wall thickness as a. 1In several articles w is called the
relative frequency.

In addition, it is advantageous to intorduce one dimensionless condition --
the complex relative frequency w,

— o2t gd 12 o2 d-oh 2
(,,,.=M=]/Vco_+;_+g+,-1/kn_f_g_l=v,+% (11)

The quantities w and ai have a simple physical meaning: they indicate that

a variable field penetrates to a portion of the characteristic dimension a.
Thus, w characterizes the penetration of a variable, non-traveling field, and
the real portiomn wy characterizes the traveling magnetic field (Ref. 8):

3 = ’ (12)

where hl and h2 represent the effective penetration depth, respectively, of the

variable non-traveling field and the traveling field in half-space with a plane
boundary dividing the media.

As regards representation of the force in dimensionless form, the situation
is more complex, since different variants are possible. In this connection,
different determinations of the dimensionless force are encountered in different
articles,

We shall assume that we have calculated the total force on a segment of a
cylinder having the length . Intorducing the dimensionless parameters w and
o which have already been indicated, we find that this force may be represented
as follows

F~l—”§‘ff(5,6). (13)

1f we divide both sides of this equation by the factor in front of f(w,a)
and if we designate the left side by F (as, for example, was done in [Ref. 12]),
we then find that F depends on o ~- a quantity on which o also depends /118
(in addition, ®w and o depend on a). This renders an interpretation of the
results more difficult,
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We may select a dimensionless condition F which does not include any of
the quantities contained in w and o. This condition is as follows*:
F

M= cr 14
FelSE (14)

However, Fcr does not have the dimension of force here, although in physical

terms it may be regarded as a force acting upon a certain volume of substance
(this will be demonstrated in specific problems),. FCr has the dimension of

pressure, but at the same time it is not pressure which may be produced by an
apparatus.

In this section, we shall adhere to the opinion that it is better to pro-
ceed with a certain complication of the physical meaning of F, than it is to
apply interdependent conditions, whose relationship is difficult to interpret
in physical terms,

The separation of the problem into two stages, as was mentioned previously,
is also advantageous when one wishes to present a graphic illustration of the
results, The relationship between no more than three quantities may be depicted
in the form of a set of curves on a plane, but the solution of the general
problem, even in the simplest cases, usually depends on no less than four quan-
tities, Nomography would be of considerable help, but nomograms have not as
yet been compiled for the results investigated in our article. A graphic illus~
tration is completely impossible, since all the formulas are very complex for
computations by hand.

We would like to point out the following. If we use w to designate the
angular frequency of a current which is supplied to an inductor, all the for-
mulas of this article reflect the processes occurring when the conductive media
are not in motion, When the conductive medium moves with respect to the in-
ductor, all the formulas remain in force, but -- instead of w -- we must sub-
stitute angther value of the frequency wy in these formulas. This value de-

pends on the slipping S:
0;=0S. (15)

In the case of S = 0, when the medium and the traveling field move at the
same velocity, all the forces are equal to zero. 1In the case of 5 < 0, these
formulas will also be real, but the value of the forces will have to be assigned
" the opposite (negative) sign. ‘ :

5. Solid Conductive Cylinder in the Field of an Ideal Inductor /119

An attempt was made to solve this problem in a report by A. I. Tyutin
(Ref. 18). However, he only calculated the force density, and did not integrate
it over the cylinder volume. This problem was studied in greater detail in

*véggiéfifqéﬁéékigg;uf and GNGEEEnd on . However, since we usually only deal
with substances in which u = Hy» in this context they are independent.
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(Ref. 12, 13), where the authors calculated the force acting upon a solid con~
ductive cylinder with the radius p, located in the traveling magnetic field of
a coaxial inductor. 1If we assume that the z-cemponent (having the amplitude

HO) of the magnetic field strength is given on the cylinder surface, we obtain

the following result

= For_ 2aimfodo(w:) /1 (0:%)]
_ For_ 5ulo (@) 11 (@:%)]
F=H? A (16)

We shall employ Fcr to designate the force acting upon a volume of substance

of 2p units of volume. Figure &4 presents a graphic illustration of dependence
(16) , where values of the condition 2p/t = 2&/7 which are more suitable for
practice are given, instead of 6. This dependence represents curves which have
one maximum.

In the case of <«<o, the force
increases in direct proportion to w,
according to the approximate formula

7 1@ (@) +ali (@)]=/o(@)[als (@) ~11 (@) ]} &
a?¢?(a) (17f

LF

and in the case of w » o it strives
to zero in inverse proportion to l/m:

=~ V2 /120

The maxima of these curves are of
special interest. However, since we
still do not know how to derive. the ex-
pressions for them analytically, we
shall confine ourselves to analyzing
their behavior in a figure., With an in-
crease in the ratio between the cylinder
diameter 2p and the pole step of the inductor T, the maxima F strive to the
largest possible value, equalling approximately 0.85. TFor small ratios of
20/t, all the maxima occur for one specific value of w, equalling 6.33. For
small values of w, the maximum force is reached at one specific value of 2p/7,
equalling 0.92 (in the case of w § 15; 2p/t  1.5).

Figure 4

Dependence of F on w for Different
2p/1 for a Solid Cylinder

The study (Ref. 13) presents formulas and curves for calculating HO with

respect to the inductor characteristics for the following case: the diameter of
the inductor is R; there is a non-magnetic, non-conductive clearance between the
conductive cylinder and the inductor:; the space outside of the surface current
(in the case of r > R) is filled with a substance having the specific conduct-

ivity o' and the magnetic permeability u'. We then have
H_ ___ 1 - .
A _{IIEI. (5,)[&1(0(6’:)81 _S ] _ [a'iKo (6’1)§§ s }}» (19)
oido(0:) | Wa'Ki (%) WK (o)
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where Si1=Iy(a)Ki(a’) + Ko(a) 1 (a');
=1Io(a) Ko (@) — Ko (@) 1o (a);
Sz=1/1(a) Ki(a") =K (a) ], (a’);

— - — (20)
Si=1(a) Ko(a') +Ki(a) o (a').
Here we have
Gi=p R=V 1’6;5+2E’4+E’2 +,~V Yo +ai—g?,

~ 2 (21)

o'=0¢'WeR?% o' =aR;
i O
P® P‘D’ B o

Substituting the value of HO from (19) in the expression for f‘, we must
select the modulus |H0| . In practice, we are primarily interested in two cases:

when the space r > R is filled by a substance with p' = «» and w' = 0. /122
This occurs in an approximate manner when there is an iron magnetic circuit in
the inductor, and when u' = Hgo o' = 0 (inductor without a magnetic circuit).

In these special cases, the number of variables is reduced to 3, and it is pos-
sible to express them graphically.

First case. u' = », o' = 0 outside of the inductor. Formula (19) changes
into .
Hy, 1
a. - =y ] 22
A, -_ all(m.)S+S ] (22)
malo(ﬁh)
Second case. u' = Moo o' = 0 outside of the inductor. Formula (19)
changes into
H_ 1
A, -{31.(6__11[1'(0(@& —s] [Ko(a)Sa s}} (23)
oio(w:) [ Ki(a') Ky (a’)

Introducing the_condition R = R/p, which is more convenient in practice,
instead of o' (then a' = aR), (22) and (23) may be graphically illustrated as
is shown in Figure 5, a and b. Due to the fact that these functions depend
slightly on w, it was possible to plot all of the curves on two graphs. We

should note that the values of H /A in the case of w = 1 and w = 0 differ by

less than 0.1%. The study (Ref. 12) compares formula (16) with the results ob-
tained experimentally. Measurements were performed with cylinders having a
different length. It was found that the force acting upon a unit length is
greater for a short cylinder than it is for a long cylinder, in the limiting
case. Extrapolating the results obtained to an infinitely long cylinder, there
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was satisfactory agreement with the theoretical value of (16).
6. Hollow Conductive Cylinder in the Field of an Ideal Inductor

A problem of this type was first studied in the article by I. A. Tyutin
(Ref. 18), which was already mentioned. A fairly complex problem was solved:
it was assumed that the cylinder is located in the field of a composite in-
ductor, consisting of two coaxial surfaces. Currents flow along the surfaces, and
one of them is located outside of the conductive cylinder, while the other is
located within the conductive cylinder. However, this sclution was limited to
only describing general formulas.

The study (Ref. 12) derived a formula for computing the force acting /123
upon a hollow cylinder with a wall thickness d (outer radius Tys inner radius
rl). The inner space of the cylinder is filled with a non-conductive, and non-

magnetic medium. Taking into account the given z-component of the magnetic
field strength on the outer cylinder surface, we obtain the expression for the
force:

o Fer_
- oAy
—2aIm{o;[a wlo(x) T1— il (x) To) [o plo (x) Ta— wily (x) lu} (24)

(2—d)[wi o plo(x) Ty —wly (x) T2 |2

where x = a(l - d);
Ty=Io(0:) Ky [0: (1—d)]+ Ko (@) 1 [0: (1 - D) ];
To=Io[wi(1—d)1Ko(01) ~ Ko[o: (1—d) 1 1o (ws);
Ta=I(0) Ki[0:(1—d)]~ K, (0:) [ [0:(1 ~d)];
Ty=Io[wi(1-d)] K\ (0:) + Kolw; (1—d) 1/, (03);

(25)

wy is expressed by means of w and o with the same relationship (11), if
the outer cylinder radius is substituted in w and o:

©0=0pwrs?;, a=ar; E:%, (26)
In this case, Fcr designates the force acting upon a volume of substance having
2d units of volume. If we set r, = 0, Iy, =P, it is natural that these formulas

1
change into a formula for a solid cylinder.

The study (Ref. 12) alse presented formulas for computing the field
strengths, if it is assumed that the tangential component of the magnetic field
strength on the inductor surface is given. They are quite complex, and we shall
not present them here.

The works (Ref. 5, 15) presented the results derived from a small number
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of experiments, in which they measured the force acting upon a hollow conductive
cylinder. They did not compare the results with theory.

The results derived from a small series of measurements with respect to
the force acting upon hollow cylinders were presented in (Ref. 4), but they were
compared with a theoretical formula for a plane inductor.

Finally, if the thickness of the cylinder wall is small as compared with
its radius, it is possible to employ the formulas for a plane layer (Ref. 21),
instead of the above formulas., without entailing any large amount of error (see
the article by A. Veze and L. Ulmanis in the present collection).

7. Solid Cylinder Having Finite Length in the Field of an /124
Ideal Inductor

The theory presented above pertained to cases when it was assumed that the
conductive cylinder had an infinite length -- i.e., the influence of the finite
length of the cylinder was disregarded.

G. Kh. Kirshteyn (Ref. 9) discovered a method for solving a similar prob-
lem for a solid cylinder having finite length, on the assumption that there is
no air gap between the cylinder and the inductor and that the space behind the
inductor has infinite magnetic permeability.

This method is as follows.
Let the cylinder have the length 2% (Figure 6). Let us divide all of the

space within the inductor into three regions: z < -% (region I); -2 & z & ¢
(region II); z 2 & (region III).

2 pi /. ‘7 In each of these regions separately,
4é§c§’/§// /é?/ /// - ‘42 we shall try to find the magnetic field
reglon,I gégpi§; region III in the form of the sum of two fields
[N . .
60, papl, -¢ ﬁi\ﬂﬁ% ot 60, pepy o Hl and H2, where Hl is the field of a

,-942474% ///zef/ // /{>¢7 hollow inductor (1b) in the regio?s

I and IIT, while in region II it is the
field of the inductor filled with a
uniform, conductive substance having
the characteristics of the finite cy-
linder under consideration, which is
described by expressions (la).

Figure 6

Arrangement of Conductive Cylinder
Having Finite Length in Inductor

H2 is the perturbation of the field

Hl close to the ends of the cylinder. It thus follows that in the case of
z + + » the field HZ must strive to zero. It follows from the condition that

U = » outside of the inductor that the z-component of the magnetic field is
the same over the entire surface of the inductor, no matter whether there is a
cylinder there or not. As is customary, it is assumed that this component
equals Hoel(wt"az) Oei(wt—az). However, since this condition is fulfilled
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by the field Hl, it follows that the tangential component of H2 on the inductor

surface equals zero. This is the boundary condition for computing HZ'

The following solution satisfies these requirements:

In region I (z < -%) 125

i

Hopl= -—'——zclnbam’l ( )eb,,,,zelmf
] Hpl= chn«\on.’o( )e”anze""‘ (27a)
Eq' = Z Cindy (F27) eanzpior;
' n=1 R
in region II (-2 € z < %)
H gt = ___Z bind (x r) (Canebin? — Cynpe=bin?) giot,
n=l

2

n=1

E@'l = 2_]1 (xz ) (Czneblflz—l-.Cane"billz) giot;
n=1

in region III (z > %)

| H, "'=‘—‘204n anf(

- Z Cinxonto Zoal ) g—banzgiat (27¢)
(DHOR n==1 R ’

Ewgl"= Z C4n]1 ( ) e“"anze“"‘
k n=1 R

) e—Y%an zelwl

HpM=

Here
bin= it_f_hmw; b —%on (28)
R?

where . are the roots of the Bessel function of the first kind of zero order

(Jo(xon) = 0); R is the radius of the inductor and the cylinder;Cln,...,C4n /126
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are the integration constants, which may be determined from the boundary con-

ditions (for the total field)
Boffz = pH 1! WH = poff 11
Hi=Hn1 for 2=~I HM=HM § ¢ 2 (29)
El=E,! Egll = Egit
Thus,

The first and third conditions of (29) yield identical equatioms.
four equations are obtained with four unknowns for each n, from which the con-

stants may be determined.
The study (Ref. 9) found the expression for the perturbation of the force

caused by the presence of the cylinder ends:
U0 e
£ (xon?+ @) (pa2+07)
(30)

[ %0n sin ek + @ cos ak o _
[Pn Ch pke+ %o sh poe P Sl Pk sin ok —a sh pak cos k) +
Xon €OS gk —a sin ak - o

+ P Sh P+ Xon ch poik (Pn sh ppk cos ak+a ch prk sin ak) J}

| A

1,5
08 v

. _q/(// e p—
- )

@=10
06 =\ )
Z::UQ:§;>¢’//4ﬁf;—"’

Q

a2
%
0~ 2 s & &
' Figure 7
Dependence of AF on k in the Case of a = 1.5 for Certain Values of o
Here _ /128
Pn=TVx0u2+ fw; k=%; AF:Z‘%W‘ (31)
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AF designates the difference between the total force acting upon a finite
cylinder, and the force acting upon a segment having the same length of an in-
finitely long cylinder.

In the case of k>>0.4, this formula may be simplified as follows:

2432
(xo,._ _‘) [(x20n+(12)2_‘1)2]+2_2[ ic_;n__i-a ]

o]
= (¥20n+a?)[(¥20n+a2) 2+ 022 ’ (32a)

Fn:

Un =YY 02+ xlon+ *%n.

Figures 7 and 8, a and b, present the graphic dependence of AF for certain
values of w, o and k computed according to formula (30). It should also be
noted that, for a sufficiently large value of o, AF may be negative for certain

values of k.

A comparison of the results obtained with the experimental data existing
previously (Ref. 12) shows satisfactory agreement.

a — b -
aF N - _ /
=10 w=fj /
Lt —
' k=005 Qﬁ
4 K:aoj N /
o3| - \ /
K=02 04 k=02
02 a /
k=04 K=04
N 02 N :
0" /—-——-:
L% o P
0 05 / 15 0 05 / 13
Figure 8
Dependence of AF on o for Certain Values of k: a - In the case
of @ = 10; b - In the case of w = 15 /127

However, it must be stated that this problem must still be investigated
in greater detail.

8. Conductive Cylinder in the Field of a Real Inductor

U. A. Saulite, A. E. Mikel'son et. al. have studied the problem of the
behavior of an infinitely long cylinder in the field of a real inductor, when
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this inductor approximated the model which was discussed in Chapter 2 (Ref. 16,
17). In this formulation, the problem quite accurately reflects the case in
which the cylinder ends project sufficiently far from the inductor ends, where
the field of the inductor has decreased almost to zero.

It was shown in (Ref. 15) that, if the cylinder is length is small as com-
pared with the inductor length, the force does not remain constant when the
cylinder is displaced along the axis of the inductor. The force can even change
sign at the end of it (Figure 9). The experiments were carried out with alumin-
um cylinders.

A calculation was made in (Ref. 17) of the radial component of the magnetic
field strength in a system consisting of a real inductor -— whose model is de-
scribed in Chapter 2 -- and an infinitely long cylinder placed in it (Figure 10).
It was found that Hr is expressed in dimensionless form as follows, with- /129

in the conductive cylinder

= 2nH, K
= . l—2fjl(l,£ )) I (Rry) +

l(kn);\-[o(hrl)p_ @]O(kfl)h(lr,) .
-+ J;(kn)kKo(M.)p,+k1°(k,l)Kl o (M,)]x

X Z{cosx (——-—:) —-cosl[( 1)z —]} I (E)e—‘[m"‘-g_}uﬂldf

outside of the conductive cylinder in the case of p S r ¥ R 130

2::1'1, J (kr;)) Li(Ar)p—k Jo(krl)I, (Ar,)
H 2 _ 1
7= ./K‘ J;(kr.)kKo(krl)p-l-kJo(kfl) Ky (hry)

(33a)

S —

)4 E {(:Os A (—3 — Z) , (fl. 3_ l) 1 _ J}K’ (_' ) —ilmg (r—1)x
~=1 A z rr +
2 :l/ {l( k])K(‘Zl) '——‘ lE (kl) l__

n=1

(33b)

(n—~l )z

e

The notation employed here coincides with the notation in formula (3). Im
addition,

A=dR; B= YR —iorh; =g b=k (34)

where P is the radius of the conductive cylinder.

The report in question does not present the expressions for the tangential

116



03

Figure 9

Change in the Force Acting Upon a
Cylinder Along the Inductor Axis; (F -
in newtons; x — in meters, 1 = 0.273 m)

region II 6'—0ﬂ =My :
L ()

ré;09 ﬂaﬂﬁ%_VA K////

7 2

region |

Figure 10

Mutual Arrangement of an Inductor
Having Finite Length and a Conductive
Cylinder

component of the magnetic field, nor the expression for the electric field

strength.

The forces acting upon the cylinder have still not been computed.

9. Conductive Sphere in the Field of a Cylindrical Inductor

A sphere, as a body with the greatest symmetry, occupies a special position

among all bodies having finite dimensions.
to determine the ponderomotive forces on both a solid and hollow sphere.

Therefore, it is definite interest
The

author of this article attempted to calculate the forces acting upon a solid

sphere located in the field of an ideal,
tion that p = « outside of the inductor (Ref. 10, 11).

cylindrical inductor, under the assump-

However, in formal terms

the solution obtained is not suitable for the computations.

Experiments measuring the forces acting upon spheres have shown that the

dependence of the force change upon w [w

if the sphere is solid, and w = uwb

if the sphere is hollow] is exactly the same as in all other cases.
w the force is directly proportional to w.

w increases, it begins to decrease.

= ouwp?
(b is the thickness of the sphere wall)

,0 is the radius of the sphere

For small

A maximum is then reached, and when

Figure 11, a, b and c, presents the results derived from measurements /132'
performed with spheres having a different radius and made of a different materi-

al -- copper, aluminum, tin, and lead.

These spheres were placed in an inductor

without a magnetic circuit (the quantity F/A 2 p2, which is a dimensional quan-

tity, is plotted along the ordinate axis.
In the case when o = 0.31, it was found that the ordinates of all four

value).

curves were proportional to the radius of the sphere.
duce the condition F/A 203, they may all be combined on one curve [see

However, in this case this is of no

Therefore, if we intro-
/133
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, /l/ x| = L } i - B
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b Figure 12
301 08 T . ) -
aZ p? Dependence of the Maximum Force on r
Agf = i
o] and 1 for Solid Spheres.
20 ///’ . .I' T Foax is Given in Newtons; Aj - in a/m;
// o 29= 500 p - in Meters; T = ©/R; r = p/R.
. . x ‘2/’:3,3!.'1'1
" Yar S
-] fapT i also (Ref. 11)]. However, for other
[ 1 _ values of o, this did not occur. This
0 N R indicates that the above dependence is
5 10 B 8 B 330 B N not universally valid.
¢ - - . . The maximum force is of great
40 T‘TWa importance in designing different
Ao? L electromagnetic carriers. The study
36 s A E. - —— b (Ref. 5) presents a graph which makes
//’ ‘\\\\\\\ it possible to determine the value of
20 LA Ll |- T E‘max/Aozp2 frgm T, r and w, where
| o T=1/R, and T = p/R (R is the inductor
0 ,éf ;2’,’,233'5;' radius) (Figure 12). This graph was
! ég’s T 02ps2bem ' compiled on the basis of experimental
/ Q// a2p=ilem - results, and is incomplete in the sense
g SO T U B -4 that it does not encompass a large
o6 N BN B M enough range of possible parameter
Figure 11 changes.
2,2 = . The results derived from measuring
Dependence of F/AO o2 on w for Solid the ponderomotive forces acting upon a
Spheres Having Certain Radii: a - in hollow sphere (Figure 13) were also
the case of o = 0.93; b - in the case of presented in (Ref. 5). F' = F/Aozb s
a = 0.62; ¢ - in the case of o = 0.31. o = ouwb2; b is the thickness of

The Inductor Radius is R = 4.0 cm; F is
Given in Newtons; A0 is Given in a/m;
p is Given in Meters.

the sphere wall.
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Figure 13

Dependence of F' on &' for Certain Hollow Spheres

We shall refrain from discussing the results in greater detail, since it
is expected that a suitable method for computing the forces acting upon a sphere
will be found in the very near future.
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/135
THEORY FOR THE PROPAGATION OF PULSED ELECTROMAGNETIC FIELDS
IN MOVING CONDUCTIVE MEDIA

G. Ya. Sermons

1. Introduction

The necessity of developing a theory for the propagation of electromagnetic
pulsed fields in conductive media has arisen in the last twenty years due to the
utilization of relaxation processes in ferromagnets (Ref. 1). This also pertains
to the necessity of studying the influence of transitional processes which occur
in electrotransmission lines when the current is switched on or off, as well as
in telephone and telegraph lines (Ref. 2-3). A theory for the propagation of
electromagnetic pulsed fields has been developed intensely during the last 50-60
years due to the use of pulsed fields for geophysical research (Ref. 4-22). The
essence of the so-called method for establishing a current (Ref. 23), which is
used for geological exploration, consists of establishing an electric or magnetic
field on the surface of the earth when a constant current is switched to a trans-
mitting antenna. A horizontal, grounded conductor or loop is used as the trans-
mitting antenna. In many cases, the distance from the receiving antenna to the
transmitting antenna is large, as compared with the dimensions of the transmit-
ting antenna. The transmitting antenna may be regarded as an electric (hori-
zontal conductor) or magnetic (loop) dipole.

Studies on the propagation of an electromagnetic field impulse in conductive
media may be reduced to investigating the formation of the field of an electric
or magnetic dipole which is located in a conductive medium (Ref. 2, 6), in a
uniform conductive half-space (Ref. 4, 13, 20, 21), or in a non-uniform, strat-
ified medium (Ref. 7-17).

It was found long ago that electromagnetic pulsed fields may be used to
develop new methods of measuring the flow rates of an electroconductive liquid
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(Ref. 24-26). In these methods, pulsed currents are induced in a moving, con-
ductive liquid by switching on the current in the primary coil. The flow /136
rate of this liquid may be determined by changes in the time intervals of the
maximum shift (Ref. 24) or the electromotive force passing through zero (Ref.
25) in the receiving coil. This is caused by the fact that the conductive
liquid removes the pulsed currents. Research on the propagation of electro-
magnetic pulsed fields in moving, conductive media was carried out due to the
necessity of making an exact determination of the dependence between the
measured intervals and the velocity of the liquid (Ref. 27-29).

The review by V. V. Novikov (Ref. 22) presents an extensive bibliography
and a survey of research on the propagation of pulsed signals in conductive
media and above the earth's surface when there is no motion. In this article,
we shall confine ourselves to examining the methods and results given in these
articles, which may be directly applied for studying the propagation of pulsed
fields in moving, electroconductive media. We shall not deal with the problem
of considering the displacement currents, since they do not play a significant
role in this formulation. Thus, the phenomena which we shall investigate are
limited to problems which include different solutions of the Maxwell equations
for moving media (Ref. 27)

JH
rotE=—p‘07t—; D
rot H=0E+opo[vH], divH=0.
7

We previously disregarded the magnetic properties of the medium (uo = 4m 10"

h/m). Introducing the electromagnetic potentials
1 JA
H——p‘; rot AandE=grad 9~ 57,

we obtain oA
va—G}lo(VVA)=UpoW (2)

and
A A.

2. Propagation of Pulsed Electromagnetic Fields in Conductive Media

The investigation of the propagation of an electromagnetic field impulse
in conductive media is considerably simplified when the medium is not in motion.
In a few of the simplest cases (the medium moves like one entire body, there is
only one component of the vector potential) there is no necessity of resorting
to the solution of equations for moving media (2). We may thus confine /137
ourselves to employing the Galilean transformation (Ref. 28, 29). In this
connection, it is pertinent to investigate the most characteristic methods and
results of solving the problem when there is no motion —— i.e., the group of
problems which include different solutions of the equations
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oA
V2A=0Mq W;

) I (3)
=—divA
@ Sy

with the corresponding boundary conditions.

Let us begin by examining the simplest case, when an electric dipole having
the length dS is placed in a medium with uniform conductivity o. The current
passing through it has the form of a single inclusion function

here 3(1) =3v(1),
0, 1<
W)={ 1, £0 ()
is the unit step function of time.
The solution of this problem has been obtained by Ollendorf (Ref. 2, 3) by

means of an operational method, én the basis of the well known relationship of
the Hertz vector (Ref. 2) for a dipole supplied by an alternating current

(o) =— 4?:; Vlwo;w' (5)

It is known from the theory of the Laplace transformation (Ref. 30) that, by
applying the operator L™l to the constant 3, we obtain

ati®

L7513 fs & dp=3y(1). (6)

2nL
a—io

Consequently, substituting p= iw in (5) and applying the operator L to the
expression (5), with allowance for the well known relationship (Ref. 30), we
obtain the expression for the Hertz potential

- o[ o

where
t=——~, D (x )——/e"“'du

For a dipole directed along the Z axis, the relationship between the /138
single component of the vector potential Az and the Hertz potential has the

following form
Az=0uoﬂ, 8)

and the electric field components may be expressed by means of the Hertz poten-
tial as

O op oIl
Eo=— =% __
Ell dy, ‘P dt » (9)



ol ol

E=oxtop- (9

Potential II satisfies the equation

o1l
V2H=O'uo—a—t—. (10)

For an infinitely long conductor directed along the Z axis (Ref. 2), ¢ = 0 and

-3 7 {1_@( 1 )]dg (11)

4 no
—C0 Vt

where r=}p2+4+¢? ; p is the distance from the observation point up to the axis;
$5. is the distance from the observation point to the dipole. Imn this case,
only one component of the electric field remains

11 .
E==°"°?>7=UM° [1 ( )] =k
45 -2
Ver+¢
(12)
1 -1
—1:970 Fe
. = 1np’c -
Figure 1 presents the dependence of £,= 3 E, on t.

A. N. Tikhonov (Ref. 4) first obtained the most complete solution of the
problem for the same dipole placed on the surface of a uniform, conductive half-
space. A. N. Tikhonov and O. A. Skugarevskaya also solved the problem for the
dipole placed in a non-uniform, stratified medium (Ref. 7-12, 15-17). The
solution of all these problems is based on the solution of the thermal con-
ductivity equation for the second and third boundary value problems. The
initial equations with partial separation of the variables are reduced to the
one-dimensional case. The use of the two methods -- the reflection and /139
the Fourier method -- yielded the dependence of the electromagnetic field over
a wide range of changes in time t.

We shall try to present the main results of these studies. Let us first
examine the case when an electric dipole, which is placed at the origin, is
directed along the Y axis and is located at the boundary z = 0 of a uniform,
conductivity half-space. Just as previously, the current changes accord-
ing to the unit step function (4), which leads to zero initial conditions. This
orientation of the dipole makes it possible to set AX = 0, and the boundary

conditions for the remaining components of the vector potential and the scalar
potential may be reduced to the following equations of continuity:

Ayl Iz.—_~0= yl1 ]z:{)’ Ay lz—_-o:Azu lz=o ’

‘ (13)
94, % -
7;— Z=b a 02__ L=', ?l IZ—O (?“ Iz—-() y
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Figure 1

Curve Showing the Establishment of an Electric Field of an
Infinitely Long Conductor in a Conductive Medium

where Al’ ¢1 are the potentials for the region z>0 and o # 0, and A are

11’ ¢II
the potentials for z<0 and ¢ = 0. In addition to the boundary conditions (13),
the vector potential must satisfy the condition of being limited at infinity,

and must have a singularity of order @3 at the origin (Ref. 31).
- 4nr
We shall try to find the solution of the problem which has been /140
posited by the method of separation of variables. We shall assume the following
A= "°de/ To(Ar) Y (2, A, £)dA (14)
and
osdy 0
a=Rr /!o(kr)Z(z M £)dA, (15)
where r = Vx2+y2 . It may be readily seen that the functions Y and Z
satisfy the equation
oru U
o2 MU=omGp - (16)

In view of the well known relationship (Ref. 31)

/ Jo(Ar)e™|z |—

22

it is clear that, in order that the vector potential have the requisite singu-
larity at the origin, the following condition must be fulfilled
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ay,‘ T = a”n

Y'I.‘=°=Y"|‘=°’ 0z l;—¢ 0z

z=0

In view of the fact that YII satisfies the following equation in the case of

z<0
Yy
0z

—x‘,Yll:Os

whose solution is given by the following function
Yu(z, M t) =u(d, t)er,

we find that Qﬁl

0z

= ).Y[ |’=0.

2=0

Consequently, in order that the first and second conditions of (17) be satisfied,
it is necessary that

Vil =u(h 1), (18)
Y,
dz z2=0

2=0"

—XY|,_,=—2A.

2=0

(19)

Thus, this problem may be reduced to the one-dimensional case of the /141

third boundary value problem for an equation of the parabolic type. As is
known (Ref. 32), the solution of the latter problem has the following form

4
_ Ouar* oy ._Guo(sten
Y(z,A\ t) = 22 / e it—v_) [ ¢ A 4(:-1)-4;] X

nop
Yrope s J (20)
_1_'((,_‘_—‘) dv
o —
Xe yt—=
With allowance for (14), the following expression is obtained for Ay
1
aps2?
A ”Ogdy/J (A7) / e —_
ﬂUMo (21)
4 Opo (2o -
—1/ e e g e_af-“ & .
ye—=

The boundary conditions for the component Az are obtained from div AII = 0 and

(13) or
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aA:H —_ aA_yH
0z l40 oy 'z—0 (22)
and
Azl l,=o= Az" L:o -

With allowance for (15), expressions (22) lead to the following equation

2z 0z
az —MZ= Ofto 37 F (23)
and the following boundary conditions
1. 1 24
Z‘L___D:—Tu(k, t)=——l‘yl ‘=0- ( )

In order to find Az’ following the procedure given by A. N. Tikhonov (Ref. 4),

let us determine the magnitude of the scalar potential as follows:

142

b . Sdy 0
(p—;—ll—odWA lY.;. ]dk—-

de 9 r (25)

T / Jo(Ar) S (2, A, £)dA,

where
0z
S(Z, A, t)=Y(Z, A, t)+$(z,2., 6. (26)

It is apparent that S satisfies equation (16), the initial zero condition, and
the following boundary condition

S'z:l) “‘l"aYlf

}‘ oz =2. (27)

1
2==)

Employing the well known solution of the first boundary value problem for an
equation of the parabolic type (Ref. 31), we obtain

=1 z 2 g2
~ Vopg ./ =g P [_‘T((It&iz?) ~0_%(t*‘)] dr. (28)
0.

Taking into account the following relationship (Ref. 35)

S

Jo(Ar)e Uﬂo“ D dr= 1. fmap, 8(‘—1) _Opor?
./ o(47) 2 t—-ce b 8(i—1))’
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we find that ( . )
t ape (221
o= 3 0 [ 2 g [ ops? (29)
8ng Ody | (t—1)2 o\8(¢t—v))°
o

Omitting the very cumbersome calculations (Ref. 4), we shall only present certain
results which will be of interest to us in the future.

The electric dipole field on the surface of the half-space (z = 0) is
determined by the following expression:

d -
El o= ?f{g da‘Z(l) -YF@® } (30)
where /143
= 1 2 1 _1Y _ 4
F t =(D —_— |t 7 ==
=) iz

where y is the unit vector directed along the Y axis.

If the source of the field is not a dipole, but any line L which connects
the points A and B, then the electric field of the line L is determined by the

integral
E= [E.(x,9,0,; &n)ds—
L

S (31)
~5mg {grad(x y)\ /F(t)ds}
where
Es (xy Y, 0: t g 7]) d(‘: {grad(x,_v)ais‘};)_;% F(?)}

is the electric field of the dipole located at a point with the coordinates
£, n(z = 0) in the s-direction.

When the conductor is located on the Y axis and is infinitely long, a
simple formula may be obtained from (31) for a single component of the electric
field

E,— (1 _e—‘i‘:‘:—"’), (32)

T nox?

and the scalar potential is ¢ = 0. We shall assume that the electric dipole
directed along the Y axis is located at the origin on the surface of a con-
ductive layer having the thickness £. Assuming that A.x = 0, we find that the

continuity conditions must be satisfied in the case of z = %, in addition to
the boundary conditions (13), i.e.,
(33).

Ay11|;=1= yllllz:l’ Azll|z=l=Alelz=l’
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0A dA
—d_;—"- =1 = ‘5;—“_[ z=l, ?ll lz=l - ?l" |z=l ’ ( 33)

where AII’ ¢II are the potentials for 0 £ z £ £ and A are the potentials

111’ qSII]'_
for z > &.

Thus, as follows from (19), the influence of the region z<0 may be replaced
by the boundary condition

ayY
2 —ar] =-oa 3
0z o™ M 1m0 (35
Taking (33) into account, we readily find that the influence of the 144
region z > £ may be replaced by the condition
oY
= AY| =0. 35
az x=l+ 2=t ( )
In a similar way, we have
1 (36)
VA =—=Y
and 2=0 l 12=0
zl =Lyl . (37)
2=={ A lz=l
It is clear from conditions (34) - (37) that the solution for a stratified

medium may be reduced to the solution of the third boundary value problem of a
one-dimensional equation of the parabolic type (16) with the boundary conditions
(34) - (37). The solution of this problem was provided by A. N. Tikhonov and

0. A. Skugarevskaya (Ref. 8-10), who employed two methods which yielded the
value of the electric field over a wide range of time changes. We shall not

go into a detailed examination of the calculations for solving this problem.

We shall only try to illustrate by means of individual examples the general
pattern of the methods employed by A. N. Tikhonov and 0.A. Skugarevskaya, which
provided a comprehensive representation of field propagation in stratified media.

In order to obtain the solution for the initial stage during which the
field is established, it is advantageous to employ the reflection method (Ref.
8). As was shown by A. N. Tikhonov (Ref. 8) (for variable T = 6%_;), in order

to obtain the solution of the equation 0
rY_ ., )4 (38)
oz M Y=oy
with and initial zero condition and the boundary conditions (34) - (37), the
function Y may be represented in the form of a series for small values of =
o
Y (2,0,7)= 2[Yan (2nl+2,0,7) = Yon 41 (2(n+ 1} -2, 0 T)]= (39)
n=0
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[~}
=Yo(@zMT) + X[y @(n+1)1+2, 4 7) ~Vaun (2(n+1) -
n=0
(39)
—2,0,01=Yo(z, A1) =Y (2l-2, M) + Y2 (2 [+2,0,7)— ..,

All the functions included in the right part of equality (39) are deter- /145

mined so that they satisfy the boundary conditions (34) - (37) as follows:

dY, (40)
'—??-f-l. Yo=2A
and
,6Y2( +1 aY:

- —()%J+1Y2("+1)= 2ol 42 Yzat1 for 2=0 (41

and
aY-
02”+l +A Yo = aa);!"-f-l'an for z=I. (42)
All the functions Ym may be completely determined with these conditions.

The function YO may be found from the solution for a semi-limited line. The

remaining functions may be found by means of the operator
[}
Lg)= [ =g (g)dL (43)
x

so that
Y,,(z,}\.,'r)=2l(—l+2AL;_)"(l—3\,L;L)Uo. (44)

Vo is determined by means of a fundamental solution of the thermal conductivity
equation, i.e.,

T
vo=2fG(z, A, ) di=

1 I
=—;f =X [ 4(1 ie—p M0 t)]

As was shown by A. N. Tikhonov (Ref. 8), the convergence of the series (39) is
determined by the condition

[Yen (2ni+2,8) — Yone (2(n+1)1-2,0) ] sgnce‘(%)‘,. (46)

(45)

As may be seen directly from (46), the series converges particularly rapidly
for small t. For the initial stage, it is absolutely permissible to confine
oneself to the first three terms of series (39), whose values expressed by
means of the operator L, are as follows:

A
Yo=2Avo—2A2L (v);
Y = ~2Avo+ 6A2L (vg) —4A3L2(vp); 47)
Ya=2Avg— 10A2L (vo) + 16A3L2 (vg) —8ALL3 (vy).
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Following the procedure of A. N. Tikhonov, in order to determine the /146
function S (26) let us introduce the auxiliary function W (z, A, T), so that

Z{z, k,t):—%}’(z, x,-:)—*——i—W(z, A1) (48)

According to conditions (36) (37), we find that W (z, A, T) satisfies the same
equation as Y, with initial zero conditions and with the following conditions

W(0,%7)=0; W(Ar1)=Y(A1). (49)

We are interested in the magnitude of the electric field on the surface of a
layer, and consequently the quantity we desire is

oz
] TXe TN o

1w
=2 [1 +7‘-'5‘-z—]z=0.

According to condition (27), the first component represents the value of S for

2 = © (in the case of half-space), and the second represents the correction for
the finiteness of the conductive layer thickness. Thus, the computation of S
may be reduced to calculating the function W. Representing it in the form

of series

[Y 1 oY 2 OW}

z=0

(50)

W(Z, )') T) =n§° [W2n (Z, )«, T.') - W2n+| (Z, }., 't')], (51)

according to conditions (48) we find that
Wa(z,2,0)=0, W,(0,2,7)=0,
Wan (LA, ©) =Yon [(20+ 1)1, A, 1],

Wane (L A, 1) =Yanu[ (204 1), A, 1.

Consequently, the functions WZn and w2n+l are solutions of equation (38)

with the conditions (34) - (37). It is apparent that they equal

Wzn(z. A, T) = § {Y2n [2(n+k+ 1)1—2, A, ‘t’] —_
A=0

(52)
—Ym[2(n+E+1)+2,A, 1]}
and - /147
Wantt (20 1) = 2, Yonu[n+k+1){—2,4,1]—
r=0 (53)

- y2n+l [2(Il+k+ l)l+2, A! ‘t]}
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As the first approximation, we may take
W(z, A7) =Yo(20—2,4,7v) = Yo (2 +2, M 1) —

(54)
~Y1(2l—2, A, v) + Y (242, A, 1)
and
9—‘! =9 %_QI_’L . (55)
o0z z=0 dz 0z e<0
For the desired function S, we obtain
4 10Y, - 0Y
51_=2~—[-—°—~_1] . 56
£=0 X at az 0 ( )

Thus, the approximate value of S in the case of z = 0 may be expressed by

means of YO and Yl.

The study (Ref. 9) presents detailed computations of the functions YO’

which are employed to express the dependence of the electric field in which we
are interested. In view of the cumbersome nature of the final formulas, we
shall not present the end results here, which have no special interest for our
purposes. We shall next investigate the solution of the problem for the final
stage during which the field is established, which was given in (Ref. 10).

In order to find the function Y (z, A, t) of our preceding problem in a
form which is suitable for the investigation in case of large t, it may be
conveniently represented in the following form

Y(z,M 8) =Y (z,A) +7V (2, 1), (57)
where Y(O) is the stationary solution, and Y is the deviation from the stationary
solution. In order to determine these functions, according to (34) - (38) we
have the following condition

(0)

a—f?)-;T-—k"’Y("’:O; 0<<z<<!;
0
O AYO=—2 for z=(; (58)
Y ®
= (0) = =
oz +AY 0 for z=lI ]
and 77 o7 148
?—A2Y=0pow; O<<z<<l;
%_}y:O for Z=0;
el [ (59)
5z TMY=0 for 2=

Y(z,2,0)=—YO(z 1),
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It is apparent that
YO (2,4) =e-*e,
Assuming

7(2, 7‘., t) = Yﬂ(z' A) Tn (x» t)r
we find that

d;::" +R,2Y, =0, (60)
e AYa=0 ror 2=0; (61)
1%Y!+M’,‘=0 for 2=l
74
and
Tn=Ce—ull"
where

t
=5 2 2, ==
pa=R2+A% apat vy
The general solution of equation (60) is
Ypo=Cicosk,2+Cysink,z.

We find the following from the boundary conditions (61)
A 2k,1
C2=7¢:Cl and tg Ral= E,,T—n_},z—

Separating the right and left part of the latter equality for n = 0 in powers
of X and retaining terms up to the third order, we obtain

2 1: 2
E2(A) =50 <324 % ns (62)
M) =Tr= W+ = 0%
The function Y may be represented in the following form /149
o .
7(2, A T) = Z CaYn(z, A) etk +a0), (63)
ne=0

The coefficients C_ are determined as Fourier coefficients of the initial func-
0)
Y :

tion

4
J Yo @17, (2,0 d2

Co=—"2 (64)

[

J1¥a(z, M) d2
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(0)

Taking into account the values of Y and Yn’ we readily find that

22 (65)

{
YO (2 M) Y, (2, N\ B
Jroenruend— 2.

With allowance for the expansion of (62) we obtain

{

Yo(z, M) Pde~l+ L2 1. 2
ofl (2, A) Pdz I BA+ g2 12, (66)

Consequently,

o— —
(k02 + AZ) (l + [2),, + — [312)

(67)

and we obtain the asymptotic formula

2h [cos koz-i';:— sin k2]
Y(z,h,t)z———‘ —
(ka®+2%) (I+ 5 BA+ 22 1902)

e- (kAT (68)

of
which may be applied to the case/small values of A, which we shall be interested
in later on. In order to illustrate the use of the formula obtained, let us

calculate the derivative BAY in the case of z = 0: /150
ot
24 Sd
¥ Mo Y
B oo™ /Jo(?hr) Y(0,A, t)di=
0 9 (69)
2
uosdy 2Aexp{ (l R+,—l?+—l)c’)t]
fo(lf) - dh.
(1 +g PA 1312)
The presence of the exponential factor exp | - %‘Ar leads to the fact that the

value of the integral for large t is determined by the value of the integrand
for small A, which substantiates the use of asymptotic formula (68). Decompos-—
ing the factor JO(Ar)exp - £ A1) under the integral sign in series with

respect to A and confining ourselves to three terms of the expansion we obtain

0A, 1o3d F 2 2 2/1 2 _2

—d 4 Py Wy DY ESad Sl 3 At —

4 3 /Jo(lr)[l A 31 +3(51 ['c))\]e T d) (70)
0
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weSdy _2_ 2t _2_|'__ A o 1212 4
4x {1 4\ 3 2, A\h . 4T3\
CUNICER S
2L 2 18¢ 12073 (70)
+—3-(~5——Tt) 7, P "+t3” . awyhlb
P ’+F)
since -
Jo(r)e~orgp—= __ 1 __
/ ) Vri+al
and
Jo(A no-ak — l
/ o(Ar)Are-ard) = ( l)"aaz" }’
The function W may be determined as the solution of the boundary wvalue 151
problem
oW aw
T_l' W= Ole—7 of "’
Wi,_,=0, W|_,=0,
z2=0 t=0 ) (71)
Qo
W'z::rl:ylz:l:e-u"- Z Ca¥u(l, M) en,T,
n=0
which leads to the asymptotic formula (Ref. 10)
W(Z A. T)~e_2" Sh }‘Z‘I"CO(A) YO(}vl) Sln koze Mot (72)

sh Al n kol

We shall not continue the calculation for the electric field components
on the surface of a conductive layer, and we shall thus conclude the examination
of the methods developed by A. N. Tikhonov and 0. A. Skugarevskaya. These
methods were employed to obtain the relationship for the initial and final stage
during which the field was established in a conductive layer lying on an ideally
conducting base (Ref. 11-12), as well as to determine the process during which
the field is established in a three-layered medium (Ref. 15). Figure 2 presents
curves showing the dependence of F nord nor® . on t = _4t  taken from (Ref.

Sdy v cuorz

7) , which were computed according to formulas for the electric field of a dipole
lying on the surface of a conductive layer. Calculations according to formulas
for the initial stage were performed for t < 0.5, and for the final stage -~ for
t 2 0.1. The dashed curve presents the results derived from calculations for
half-space. As may be seen from the curves, the presence of a limited layer
leads to an increase in the field amplitude. This may be explained by reflection
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of the field from the layer surface.

We may obtain the electric field of an infinitely long conductor, located

on the Y axis, which is given
ductive medium and half-space
the dipole directed along the
expressions, it is not always
and then to integrate over an

Y axis.

one component of the vector potential Ay

advantageous to solve the problem for the
infinitely long conductor.

by the simplest formulas, in the case of a con-
by integration of the expressions obtained for

dipole
dipole,
only

In view of the complexity of the

Since we have
in the last case and since all

depend on the two coordinates x and y, we may regard the problem as a two-dim-

ensional problem. In view of this fact

AZ of the vector potential vanish.

The component Ay which may be deter-

, the scalar potential and the component
/152

mined by expression (14), may be determined by the following transformation, as

may be readily seen:

Poq

Tk

35
I =
30 [%N\\\‘-~_/// °
“r g
20 lr—\\\\\\"‘/// ]
? /Z:
s_1
o2
"0 N \-\Z\ - .
a5 \I\‘T- -_/./.___ .
t
0 1 2 3 4 5 6 7
Figure 2

Curves Showing the Establishment of the
Electric Dipole Field on a Conductive
Layer Surface for Different %=

= 2,

where & is the Layer Thickness; r -~ is
the Distance from the Dipole Along the
X Axis.
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2, A, t)cos Ax ‘f\l

(73)

The problem of determining A.y may be

reduced to applying the methods which
we investigated above for determining
the function Y.

The methods developed by A. N.
Tikhonov and 0. A. Skugarevskaya, which
are based on an analysis of the solution
of the thermal conductivity equation
and which are rather complex in nature,
make it possible to analyze the solution
graphically over a wide range of changes
in time. 1In order to examine similar
problems, other authors have employed
an operational method (Ref. 1-2, 5, 6,
13, 14, 18-21, 27-29). As we shall sub-
sequently see, the operational method
may be visualized more clearly, as com-
pared with the methods of A. N. Tikhonov.
Difficulty is entailed here when we de-
termine the inverse transform and ana-
lyze the solution. D. N. Chetayev (Ref.
13) has provided a graphic application
of the Laplace transformation for solv-
ing the problem regarding the /153
establishment of the field in stratified
media, when the conductivity of the two
layers differs only slightly.

Let us now investigate the propaga-
tion of electromagnetic pulsed fields
in moving media, where the operational

quantities



method will be illustrated at the same time.

3. Propagation of Pulsed Electromagnetic Fields in Moving
Electroconductlve Media

Let us begin the examination of the propagation of pulsed electromagnetit
fields in moving media with the problem in which the source of the field is an
electric dipole located at the origin. The vector potential of this dipole
satisfies the following equation (Ref. 29)

0A .
V?A—opo (VW) A— 0o 57 = — Hojo (74)
and the initial condition
Ali=0=0, (75)

where jo = Qdrd(r) and 8(r) = 86(x)8(y)8(z) is the three-dimensional delta-func-
tion.

In order to simplify subsequent computations, we shall assume that the

medium moves in the direction of the X axis. In this case, it is natural to

assume that v. = v, v. =v_ =0, A = A =0 and A satisfy the following
X z X z y

equation

dA dA
VAy—opev 5 2 — opo—5 = —meJdyd(r). (76)
Applying the Laplace transformation
-]
ZyzfA,,e‘P’dt=LA,, (77)
d
to equation (76), with allowance for the initial conditions (75), we obtain

04, v
A2Z,,—auovb}!—ailopfqu= - ;1,‘1103‘1'.‘/6(")' e

b
The solution of equation (78) may be written/m%ans of the Green's function for
a point source (Ref. 34):

—baSdy _/ dk, / dk, / el 79
Av=omys k2 -+ ik ope0 F opep T (79)
where kr = k X+kyy+k z and k +k 2 k The inverse transform of 154

the integrand may be convenlently ertten, by applying the multiplication
theorem for the Laplace transformation (Ref 30):

At

d
_l;cf’n.;//dk /dk /dkfe e cos ky (X —07) X

Xcos kyy cos kzdx.

(80)
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Integrating over kx’ ky and kz, we obtain the following expression

t

_A,=3ﬂf<‘l!io_)§ exp{-—%[(x——vt)2+y2+z"’]}dt, (81)

G 4n
0

which, as may be readily seen, may be reduced to the expression for the Hertz
potential (7) in the case of v = 0, with allowance for (8).

The same result 1is obtained for the case when the dipole is directed along
Z, and the motion takes place in the X direction, just as previously. For a
dipole directed along X (i.e., in the direction of motion of the medium) we have

¢

d
1.=32 (ot (ot (e gean . 2

] 4nv

The scalar potential may be determined by the following relationship

1

=—divA—v,4,. (83)
(P cp‘o xXéix

In order to find the field of an arbitrary circuit or conductor, we must inte-

grate the dipole potential over this circuit or conductor, assuming beforehand

that it is formed of elementary dipoles, whose vector potential is determined

by formulas (81) and (82).

By way of an example, let us calculate the electric field of a circular
circuit in the plane (Y, Z) with the center at the origin. The vector potential
of the dipole located in the plane (Y, Z), with the coordinates 1, ¢ and the
length ds, has the following form:

t
Sds [{opo\3 sy,
a="3 [ (e tere - e (~o07+ =-m)+ (2= 1) .
0
Introducing the cylindrical coordinates /155

(84)

y=rcosy, z=rsinq,
n=acosa, t=asina,
ds=ada,

we obtain the expression for the single component A¢ of the vector potential

of the circular circuit:

¢
Sa [[op,\2
Ap= o (;fgg)‘zexp{ - 0—420 [a?+r2+ (x—vr)’]} X
(]

(85)

X exp{i;l:‘l ar COS(G."\P)} cos adudr.

—X
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In the case of cylindrical symmetry, we may set ¥ = 0 and, employing the integral
representation for the Bessel function of a purely imaginary arguement (Ref. 31),
we obtain

-Z2) (Z:ﬂ) o{~ e [t (=0 b (280 (86)

The scalar potential ¢ = 0, and the following expression is obtained for the
electric field

aAq, - 21a3 aplo _3_ po

=— = 24 42 — opear

Eo=—t =% (41::) exp{ (a2 412+ (x vt)q}ll(_l;ot_), (87)
The electromotive force, directed in the circular circuit of radius r which

is located at the distance x from the first circuit, may be expressed by the
integral

25
(‘E=f Egrdg=2arE,.
d

(88)
Consequently, we have
@ ( )‘S'eXp{——[l-l-;z'*-(x—-u )2]} (_2_2__’_), (89)
where
—_— 2 - - - _ l
G=-92 @ i=_4 . ;1. 7% -
V23 opoa?’ r= X aandv 3 cueatv

are dimensionless variables. The latter results in the case of r = a coincide
with those obtained in (Ref. 27).

Let us present still another method for solving the problem for mov- /156
ing media when a solution of equation (2) is not required, and when we may
confine ourselves to employing the Galilean transformation (Ref. 28, 29). This
method is sometimes simpler, as compared with the solution of the problem with

an equation for moving media (Ref. 27). In order to examine this method, let
us introduce the four-dimensional potential ¢ with the components (Ref. 33)
i
CDI=A::. ®2=Ay, ®3=A20 (D4=?? (90)

and the four-dimensional radius vector x with the components
X=x, Xz=y, x3=2, xy=icl. (91)

When changing from an inmobile system of reference to a system which moves in
the x direction with the velocity v with respect to the first, according to the
theory of relativity, the four-dimensional potential and the coordinates may
satisfy the Lorentz transformation

®|+l—-q)

=

(D,2=(D2, (DIS=®3' (92)
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Q=
1/1_”2 (92)
r
and
x.-l-i:_—x,
= =, X'o=x3, X'3=x3,
P
Vi-%
(93)
v
x4—-t?xl

am— &
4 l/l__%;

Examining the case of slowly moving media and disregarding terms containing
2/c2, let us turn to the Galilean transformation

Alx=A:, Ay=A, A=A, (94)

¢ =p—vA,
and 4157
, (95)

X=x—vuvt, y=y, 2'=z; V=t

Employing the transformation formulas obtained for electromagnetic potentials,
we may readily obtain the solution for moving media. For this purpose, we must
first solve the problem in a coordinate system moving together with the con-
ductive medium, by transforming the potential and the coordinates of the im-
mobile source of the field according to (94) (95). Employing the inverse trans-
formation, we may then change to an immobile coordinate system.

Let us illustrate the statements presented above with the example of a
two~dimensional problem (Ref. 28). Two infinitely long conductors, with
different currents moving in the opposite direction and having the magnitude
8§ , are arranged on the surface of moving half-space at the height h in the
Y direction. The conductors are located symmetrically with respect to the Y0z
plane. The XOY plane coincides with the surface of the half-space. The currents
change according to a unit step function of time (4). In this case, the scalar
potential vanishes, and only one component of the vector potential Ay = A re-

mains, which satisfies the following equation in a system which is rigidly
connected with the moving half-space:

g2zA’ | o*A 04’

axm + 0z'% =0llo F[f (96)

with the initial condition

A'(x', 2, 0) =0. (97)
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The continuity conditions at the boundaries z' =

= 0 and z' = h are the boundary
conditions, just as previously.

The derivative 3A' on the surface z' = h
9z'
undergoes a discontinuity, which equals the density of the surface current j':
AL (X h ) =A" (X, h 1),

- , Dy , =p-0j,v
02" 'y 02" 'y (98)
Ay (x,0,8)=A";, (¢, 0, 1),
oMyl oA
0z vo 02’ Az’=0’
where A'I is the solution of equation (96) for the region z' » h, A' is the

IT
solution for 0 < 2' < h, and A'III is the solution for z' £ 0. In addition to

the boundarv conditions,
for z' » +»

we must take into account the limiting condition /158

The density of the surface currents with respect to the immobile coordinate
system may be expressed by means of the delta function

j=3[d(x—a) —O(x-i-a)]_—.ggf sin Ax sin AadA.
1]

In the mobile coordinate system, we obtain the following by means of the trans-
formation (95)

L, 93 [
i =?8/ sin A (x’+vt) sin AadA.

[}

Applying the transformation (77) to equation (96) and boundary conditions (98),
we obtain the equation

P ,
g% g =oopA 99)

and the boundary conditions

At (x', h, p) =A"y(x', h, p),

0A",
az'

R (100)

Z-’" (X’, 0! p) =z,l" (x,v 01 P) ’

aﬁll — a“T’_lll

02" gy 02

)
z'=h
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where

and

FPSinAx" 430 cos Ax’
Pr+AR?
Separating the variables of the last equation, we may readily obtain the solu-

tion satisfying the boundary conditions (100) and the limiting condition for
z' + +oo,

After all the constants are determined, the solutions for all three

/159
regions assume the following form:
o0 .
Z’]=la"n=i e"'l(z +h) A’ —
+x (101)
o
S r D e dx
o ~n(z+m 20 Red Al - A
x_/Fe o l+1t Fe lz Il’
0 0
"'”_.@/ Fe—-)h+xz J8a (102)

where x =Vx2 + cuop .

The inverse transform of the integrand may be found according to the well
known formulas (Ref. 35) by employing the multiplication theorem:

¢ 3
A= gl_:_t‘@/dr/ e~ M+ M (A, v) sin A (X’ +vi—vt) sin Aadh —~
0

(103)
3 ar
_ u; /e-h(z’+h) sin A (x4 vf) sin ha~-+
0
s f :
+ ;u_;: f e~Mz -kl gin A (x" 4 vf)sin ra %—,
(104

A= -—E-—/. e~MN (2, A, 1) sin A (¥’ + vf— vt) sin AadA,

where
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and 2 22
o
N(Z’, ;V, T) = - :*pﬂ —_
Yroper

gl -olyE )

Changing to the stationary coordinate system,according to (94), (95) we
obtain
(-]

t
A= El_;@. f s / e~ e+RM (A, ) sin A (x— vt) sin AadA —

—v () A+ (DA,

¢ oo
Ay= 2_“,_:§. f dv f e N (2, A, ) sin.A (x— vf)sin AadA,
o 0
where

o
Avor — B‘:t_s_f e~Mz+h) gin Ax sin Aa d—ll
U

is the expansion of the vector potential of the reflected currents and
*®
o3 ] . dA
&;;—f e Mzt sin Ax sin Aa - z2z==h;
A ex o
y = 1

s f a\
e f eMz-h) sin Ax sin Aa o,
(1]

3 z2<ch

is the expansion of the vector potential of the external currents.

The strength of the electric field for z > 0 is

Ey'—_—. —%_Evﬂ_i_EvoT: __Eyex’

where

®
= 203 f e-Me+RM (A, ) sin A (x—vf) sin AadA,

Evot =} (t)Avm; Evex= 6 (t)Ave'x

and 6§ (t) is the impulse function.

/160

(105)

(106)

(107)

(108)

(109)

(110)

We shall omit the very cumbersome calculations of the integral (110) ,-'and
we shall only present the final result for the field of the induced currents:
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w (éﬁi—_—ic'—) -1 w (_—g’f*'.ig)— 1 w (g——2+_i§) -1

ST T EFDT T T (CETD)° GrR)T
w (:53;'1‘5) ~1 (D
Vi X1 1
(—E2+iL)? ]/;7(512*'?;2 E2+C2)° 161

where
z

w(z)=e'=‘(l +]—/2—£—.fe"’du)
0

is the probability integral of the complex argument which is a tabulated func-
tion (Ref. 36);

=2 7= ?=.0Tf.0§;, =t
F-ropar; B =Tl Ey =3+E
617w V=130 ]
2 j(éb,__ - 721,00 _i'ﬂ
’ \ “Fﬂ“r‘waﬁl]
08 \/ \ /I V=02
V \\ ,V:D
04
| N
0 I [ Nz== D ,Z
|l A \ AN A
wll

AN

iR :
. AN /
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[

[
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Figure 3

Dependence of the Function }—55 on t and v in the Case of

X =2and ¢ = 0.5
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For the special when ¢=0 we have /162

= 1 B 1 5
Br=2lezere(- ) e 9] o

We may obtain the latter formula by means of (32), summing up the field of the
two conductors and employing the substitution x + x - vt. Figure 3 presents
curves showing the dependence on t and v, computed according to formula (111)
for x =2 and 35 = 0.5.

As the last examples have shown, when allowance is made for the transforma-
tions (94) (95), we may readily change from computations which are performed .
for a conductive layer to computations for a moving conductive layer. For the
case of an infinitely long conductor, these results are only achieved by re-
placing x + x - vt.

In conclusion, we would like to point out that the transition of the func-
tion (111) through zero between two main maxima (see Figure 3) is determined
by the condition x = vt. It may be readily seen that the electromotive force
induced in a rectangular coil, which is arranged vertically with respect to the
surface of half-space or the moving layer, satisfies this condition. This fact
has been employed to compile a new method for measuring the velocity of con-
ductive media (Ref. 25); this method is based on the transition through zero of
the voltage in the measuring coil.
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